A Chemical Kinetics Model for Glass Fracture

Journal of the American Ceramic Society - Tập 76 Số 10 - Trang 2613-2618 - 1993
Terry A. Michalské1,2, Bruce C. Bunker3,1,2
1*Member, American Ceramic Society.
2Sandia National Laboratories,‡ Albuquerque, New Mexico 87185
3Currently at Battelle, Pacific Northwest Laboratories, Richland, Washington 99352.

Tóm tắt

We utilize a chemical‐kinetics‐based model to describe the rate of crack extension in vitreous silica as a function of the applied stress and the presence of reactive species. Our approach builds upon previous fracture models that treat the atomic bond rupture process at the crack tip as a stressenhanced hydrolysis reaction. We derive the stress dependence for siloxane hydrolysis from measurements of hydrolysis rates for strained silicate ring structures. The stress dependence determined for siloxane hydrolysis yields an activation volume of 2.0 cm3/mol, which is in good agreement with the stress dependence determined for silicate glass fracture. This result supports previous fracture models that are based on absolute reaction rate theory and predicts an exponential dependence of crack extension rate on applied stress intensity.

Từ khóa


Tài liệu tham khảo

10.1007/978-1-4615-7014-1_12

10.1111/j.1151-2916.1983.tb15715.x

10.1007/BF00113930

10.1007/BF00644665

10.1111/j.1151-2916.1971.tb16013.x

10.1007/BF00752191

10.1038/154341a0

R. J.CharlesandW. B.Hillig “The Kinetics of Glass Failure by Stress Corrosion;” pp.511–27in Symposium sur la Resistance Mechanioue du Verre et les Moyens de 1'Ameliorer Union Scientifique Continentale du Verre 24 Charleroi Belgium 1962.

10.1016/0039-6028(89)90337-3

Griffith A. A., 1920, Phenomena of Rupture and Flow in Solids, Philos. Trans. R. Soc. London. Ser. A, 221, 163

10.1111/j.1151-2916.1985.tb16160.x

10.1111/j.1151-2916.1967.tb15145.x

S. W.Widerhorn E. R.Fuller andR.Thomson “Micromechanisms of Crack Growth in Ceramics and Glasses in Corrosive Environments ”Met. Sci. 450–58(1980).

Laidler K. J., 1987, Chemical Kinetics

Hamann S. D., 1963, High Pressure Physics and Chemistry, 163

10.1063/1.333789

10.1016/0039-6028(89)90603-1

Brinker C. J., 1986, Chemical Reactivity and the Structure of Gels, J. Chim. Phys., 11, 851, 10.1051/jcp/1986830851

10.1021/ja00315a077

10.1107/S0365110X55001333

10.1557/PROC-73-619

10.1016/0016-7037(89)90160-9

10.1016/0021-9797(79)90307-2

10.1021/ba-1967-0067.ch007

Greenburg A., 1978, Strained Organic Molecules

10.1063/1.447723

Kudo T., 1985, Theoretical Study of the Dimerication of Silonone and the Properties of the Polymeric Products (H2SiO) n (n= 2, 3, and 4). Comparison with Dimers (H2SiS)2 and (H2CO)2, J. Am. Ceram. Soc., 107, 2589

10.1007/978-3-642-69320-5

Mallinder F. P., 1964, Elastic Constants of Fused Silica as a Function of Large Tensile Strain, Phys. Chem. Glass, 5, 91

March J., 1985, Advanced Organic Chemistry

Michalske T. A., 1988, Raman Study of Silica Glass Under Tensile Stress, Phys. Chem. Glass, 29, 150

10.1063/1.335860

10.1557/JMR.1990.0313

10.1111/j.1151-2916.1991.tb07820.x