Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Một Sự Đặc Trưng của Dạng Thông Thường cho Các Hệ Thống Điều Khiển
Tóm tắt
Mục tiêu của chúng tôi trong bài báo này là tổng quát hóa phương pháp dạng thông thường tích phân cho các hệ thống điều khiển phi tuyến.
Từ khóa
Tài liệu tham khảo
Arnold VI. Geometrical methods in the theory of ordinary differential equations. Berlin: Springer; 1983.
Barbot J-P, Monaco S, Normand-Cyrot D. Quadratic forms and approximated feedback linearization in discrete time. Int J Control 1997;67(4):567–587.
Belitskii GR. Invariant normal forms and formal series. Funct Anal Appl. 1979;13:59–60.
Belitskii GR. C∞-normal forms of local vector fields. Acta Appl Math 2002;70:23–41.
Chow S-N, Li C , Wang D. Normal forms and bifurcation of planar vector fields. Cambridge: Cambridge University Press; 1994.
Courant R, Hilbert D. Methods of mathematical physics, vol. II. New York: Interscience; 1961.
Elphick C, Tirapegui E, Brachet ME, Coullet P, Iooss G. A simple global characterization for normal forms of singular vector fields. Physica D. 1987;29: 95–127.
Elphick C. Global aspects of hamiltonian normal forms. Phys Lett A. 1988; 127: 418–424.
Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Berlin: Springer; 1983.
Hamzi B, Krener AJ, Kang W. The controlled center dynamics of discrete-time control bifurcations. Syst Control Lett. 2006;55(7):585–596.
Hamzi B, Kang W, Krener AJ. The controlled center dynamics. SIAM J Multiscale Model Simul. 2005;3(4):838–852.
Hamzi B, Kang W, Barbot J-P. Analysis and control of Hopf bifurcations. SIAM J Control Optim. 2004;42(6):2200–2220.
Hamzi B, Barbot J-P, Monaco S, Normand-Cyrot D. Nonlinear discrete-time control of systems with a Naimark-Sacker bifurcation. Syst Control Lett. 2001;44:245–258.
Hamzi B. Quadratic stabilization of nonlinear control systems with a double-zero control bifurcation, Proceedings of the 5th IFAC symposium on Nonlinear Control Systems (NOLCOS’2001) 2001: 161–166.
Hamzi B, Barbot J-P, Kang W. Normal forms for discrete-time parameterized systems with uncontrollable linearization, Proceedings of the 38th IEEE Conference on Decision and Control 1999: 2035–2039.
Hamzi B, Tall IA. Normal forms for discrete-time control systems, Proceedings of the 42nd IEEE Conference on Decision and Control 2003;2:1357–1361.
Kang W., Krener AJ. Extended quadratic controller normal form and dynamic state feedback linearization of nonlinear systems. SIAM J. Control Optim. 1992;30:1319–1337.
Kang W, Krener AJ. 2006. Normal forms of nonlinear control systems. In Perruquetti W, Barbot, J-P, editors. Chaos in automatic control. p. 345–376.
Meyer KR. Normal forms for the general equilibrium. Funkcialaj Ekvacioj 1984;27:261–271.
Meyer KR, Hall GR, Offin D. Introduction to Hamiltonian dynamical systems and the N-body problem. Berlin: Springer; 2009.
Murdock J. Normal forms and unfoldings for local dynamical systems. Berlin: Springer; 2003.
Murdock J. Hypernormal form theory: foundations and algorithms. J Differ Equ. 2004;205:424–465.
Tall IA, Respondek W. Feedback classification of nonlinear single-input control systems with controllable linearization: normal forms, canonical forms, and invariants. SIAM J Control Optim. 2003;41(5):1498–1531.
Tall IA, Respondek W. 2004. Weighted canonical forms. Proceedings of the 43rd IEEE Conference on Decision and Control, pp. 1617–1622.
Respondek W, Tall IA. 2006. Feedback equivalence of nonlinear control systems: a survey on formal approach. In W. Perruquetti and J-P. Barbot editors. Chaos in Automatic Control. p. 137–262.
Poincaré H. Mémoire sur les courbes définies par une équation différentielle. J Maths Pures Appl. 1885;4(1):167–244.