A Characterization of Multiplicity-Preserving Global Bifurcations of Complex Polynomial Vector Fields

Kealey Dias1
1Department of Mathematics and Computer Science, Bronx Community College of the City University of New York, 2155 University Avenue, Bronx, NY, 10453, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Álvarez, M., Gasull, A., Prohens, R.: Topological classification of polynomial complex differential equations with all the critical points of center type. J. Differ. Equ. Appl. 16(5), 411–423 (2010)

Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Qualitative Theory of Second-Order Dynamic Systems. Wiley, New York (1973). (Original: Nakua, Moscow 1967)

Artés, J.C., Llibre, J., Schlomiuk, D.: The geometry of quadratic differential systems with a weak focus of second order. Int. J. Bifurc. Chaos 16(11), 3127–3194 (2006)

Benzinger, H.E.: Plane autonomous systems with rational vector fields. Trans. Am. Math. Soc. 326(2), 465–483 (1991)

Benzinger, H.E.: Julia sets and differential equations. Proc. Am. Math. Soc. 117(4), 939–946 (1993)

Branner, B., Dias, K.: Classification of polynomial vector fields in one complex variable. J. Differ. Equ. Appl. 16(5), 463–517 (2010)

Brickman, L., Thomas, E.S.: Conformal equivalence of analytic flows. J. Differ. Equ. 25, 310–324 (1977)

Buff, X., Chéritat, A.: Ensembles de julia quadratiques de mesure de lebesgue strictement positive. C. R. Acad. Sci. Paris 341(11), 669–674 (2005)

Buff, X., Tan, L.: Dynamical convergence and polynomial vector fields. J. Differ. Geom. 77(1), 1–41 (2007)

Christopher, C., Rousseau, C.: The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point. Int. Math. Res. Not. 9, 2494–2558 (2014)

Dias, K.: Enumerating combinatorial classes of complex polynomial vector fields in $$\mathbb{C}$$. Ergod. Theory Dyn. Syst. 33, 416–440 (2013)

Dias, K., Tan, L.: On parameter space of complex polynomial vector fields in $$\mathbb{C}$$. J. Differ. Equ. 260, 628–652 (2016)

Douady, A., Estrada, F., Sentenac, P.: Champs de vecteurs polynomiaux sur $$\mathbb{C}$$. Unpublished manuscript

Fathi, A., Laudenbach, F., Poenaru, V.: Traveaux de thurston sur les surfaces. Asterisque, pp. 66–67 (1979)

Gardiner, F.P., Hu, J.: Finite earthquakes and the associahedron. In: Teichmüller theory and moduli problems, pp. 179–194 (2010)

Garijo, A., Gasull, A., Jarque, X.: Normal forms for singularities of one dimentional holomorphic vector fields. Electron. J. Differ. Equ. 2004(122), 1–7 (2004)

Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

Hájek, O.: Notes on meromorphic dynamical systems, I. Czech. Math. J. 16(1), 14–27 (1966)

Hájek, O.: Notes on meromorphic dynamical systems, II. Czech. Math. J. 16(1), 28–35 (1966)

Hájek, O.: Notes on meromorphic dynamical systems, III. Czech. Math. J. 16(1), 36–40 (1966)

Jenkins, J.: Univalent Functions. Springer, Berlin (1958)

Llibre, J., Schlomiuk, D.: The geometry of quadratic differential systems with a weak focus of third order. Can. J. Math. 56(2), 310–343 (2004)

Mardešić, P., Roussarie, R., Rousseau, C.: Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Mosc. Math. J. 4, 455–498 (2004)

Muciño-Raymundo, J., Valero-Valdés, C.: Bifurcations of meromorphic vector fields on the Riemann sphere. Ergod. Theory Dyn. Syst. 15(6), 1211–1222 (1995)

Needham, D., King, A.: On meromorphic complex differential equations. Dyn. Stab. Syst. 9, 99–121 (1994)

Neumann, D.: Classification of continuous flows on 2-manifolds. Proc. Am. Math. Soc. 48(1), 73–81 (1975)

Oudkerk, R.: The parabolic implosion for $$f\_0(z)=z+z^{\nu +1}+o(z^{\nu +2})$$. Ph.D. thesis, University of Warwick (1999)

Rousseau, C.: Analytic moduli for unfoldings of germs of generic analytic diffeomorphims with a codimension $$k$$ parabolic point. Ergod. Theory Dyn. Syst. 35, 274–292 (2015)

Rousseau, C., Teyssier, L.: Analytical moduli for unfoldings of saddle-node vector fields. Mosc. Math. J. 8(3), 547–614 (2008)

Shishikura, M.: Bifurcation of parabolic fixed points. In: Lei, T. (ed.) The Mandelbrot Set, Theme and Variations. Cambridge University Press, Cambridge (2000)

Sverdlove, R.: Vector fields defined by complex functions. J. Differ. Equ. 34, 427–439 (1979)