A C<sub>1</sub> microkinetic model for methane conversion to syngas on Rh/Al<sub>2</sub>O<sub>3</sub>

AICHE Journal - Tập 55 Số 4 - Trang 993-1008 - 2009
Matteo Maestri1,2, Dionisios G. Vlachos1, Alessandra Beretta2, Gianpiero Groppi2, Enrico Tronconi2
1Dept. of Chemical Engineering and Center for Catalytic Science and Technology (CCST), University of Delaware, Newark, DE, 19716
2Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

Tóm tắt

AbstractA microkinetic model capable of describing multiple processes related to the conversion of natural gas to syngas and hydrogen on Rh is derived. The parameters of microkinetic models are subject to (intrinsic) uncertainty arising from estimation. It is shown that intrinsic uncertainty could markedly affect even qualitative model predictions (e.g., the rate‐determining step). In order to render kinetic models predictive, we propose a hierarchical, data‐driven methodology, where microkinetic model analysis is combined with a comprehensive, kinetically relevant set of nearly isothermal experimental data. The new, thermodynamically consistent model is capable of predicting several processes, including methane steam and dry reforming, catalytic partial oxidation, H2 and CO rich combustion, water‐gas shift and its reverse at different temperatures, space velocities, compositions and reactant dilutions, using the measured Rh dispersion as an input. Comparison with other microkinetic models is undertaken. Finally, an uncertainty analysis assesses the effect of intrinsic uncertainty and catalyst heterogeneity on the overall model predictions. © 2009 American Institute of Chemical Engineers AIChE J, 2009

Từ khóa


Tài liệu tham khảo

10.1016/S0360-3199(98)00131-1

10.1016/S0021-9517(03)00021-6

10.1016/S0360-3199(00)00067-7

10.1016/S0360-3199(00)00061-6

KupeJ ZizelmanJ Botti JJ.Method and system for regeneration NOx adsorbers and/or particulate filters.2004: US Patent 6832473.

10.1016/j.apcatb.2007.08.008

Moulijn JA, 2001, Chemical Process Technology

NRC, 2004, The hydrogen economy: opportunities, costs, barriers and R&D needs

USA D.o.E.‐.Hydrogen Fuel Cells and Infrastructure Technologies program. Available from:http://www1.eere.energy.gov/hydrogenandfuelcells/production/natural_gas.html.

10.1021/bk-2005-0914.ch011

Vlachos DG, 2008, Microfabricated Power Generation Devices, 179

10.1007/BF00766145

10.1016/0021-9517(92)90022-A

10.1126/science.259.5093.343

10.1002/aic.10938

10.1002/anie.200701237

Dumesic JA, 1993, The microkinetics of heterogeneous catalysis

10.1016/j.ces.2004.09.038

10.1016/j.combustflame.2007.02.006

10.1016/j.ces.2008.02.024

10.1016/j.jcat.2008.02.009

10.1016/j.jcat.2008.02.010

10.1021/jp052479t

10.1002/aic.690461013

10.1021/jp034954y

10.1016/S1385-8947(02)00065-7

10.1016/j.compchemeng.2006.05.033

Shustorovich E, 1998, The UBI‐QEP method: a practical theoretical approach to understanding chemistry on transition metal surfaces, Surf Sci Rep, 31, 5, 10.1016/S0167-5729(97)00016-2

10.1080/01614949508006451

10.1016/S0039-6028(00)00598-7

10.1021/ja0207551

10.1016/S0920-5861(03)00221-9

10.1016/j.jcat.2006.03.018

10.1016/S0009-2509(98)00261-9

10.1016/S1381-1169(98)00084-3

10.1063/1.452886

10.1016/S0039-6028(99)00873-0

10.1016/S0039-6028(96)00962-4

10.1063/1.481645

10.1016/j.jcat.2003.09.030

10.1006/jcat.1999.2523

10.1006/jcat.2001.3397

10.1021/ie800343s

10.1016/j.jcat.2008.08.008

MorleyC.GasEq: A Chemical Equilibrium Program for Windows. Available from:http://www.arcl02.dsl.pipex.com/.

10.1002/aic.11244

10.1016/S0009-2509(02)00589-4

10.1016/j.jcat.2006.05.008

MaestriM.Short‐contact‐time Catalytic Partial Oxidation of methane on Rh: reactor analysis and microkinetic modeling. Italy: Politecnico di Milano;2008. PhD. Thesis.

10.1016/S0039-6028(97)00091-5