A Broad Overview of Positron Emission Tomography Radiopharmaceuticals and Clinical Applications: What Is New?

Seminars in Nuclear Medicine - Tập 41 Số 4 - Trang 246-264 - 2011
Shankar Vallabhajosula1, Lilja B. Sólnes1, Brigitte Vallabhajosula1
1Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Weill Cornell Medical College of Cornell University and New York Presbyterian Hospital, New York, NY

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ido, 1977, Fluorination with F2: convenient synthesis of 2-deoxy-2-fluoro-d-glucose, J Org Chem, 42, 2341, 10.1021/jo00433a037

Hamacher, 1986, Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution, J Nucl Med, 27

Füchtner, 1996, Basic previous term hydrolysis next term 2-[18F]fluoro-1,3,4,6-tetra-O-acetyl-image-glucose in the preparation of 2-[18F]fluoro-2-deoxy-Image-glucose, Appl Radiat Isot, 47, 61, 10.1016/0969-8043(95)00258-8

2010, Radioisotope products and their availability, Nuclear Technology Review, 36

Vallabhasojula, 2007, 18F-Labelled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanism of tumor localization, Semin Nucl Med, 37, 400, 10.1053/j.semnuclmed.2007.08.004

2009

Dunphy, 2009, Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET, J Nucl Med, 50, 106S, 10.2967/jnumed.108.057281

Coenen, 2010, Fluorine-18 radiopharmaceuticals beyond [18F]FDG for use in oncology and neurosciences, Nucl Med Biol, 37, 727, 10.1016/j.nucmedbio.2010.04.185

Wadsak, 2010, Basics and principles of radiopharmaceuticals for PET/CT, Eur J Radiol, 73, 461, 10.1016/j.ejrad.2009.12.022

Någren, 2010, Radiopharmaceuticals for positron emission tomography investigations of Alzheimer's disease, Eur J Nucl Med Mol Imaging, 37, 1575, 10.1007/s00259-009-1301-z

Choi, 2009, Preclinical properties of 18F-AV-45: a PET agent for amyloid beta plaques in the brain, J Nucl Med, 50, 1887, 10.2967/jnumed.109.065284

Sioka, 2010, Recent advances in PET imaging for evaluation of Parkinson's disease, Eur J Nucl Med Mol Imaging, 37, 1594, 10.1007/s00259-009-1357-9

Shaw, 2009, Molecular imaging in cardiovascular disease: targets and opportunities, Nat Rev Cardiol, 6, 569, 10.1038/nrcardio.2009.119

Ghosh, 2010, Assessment of myocardial ischaemia and viability: role of positron emission tomography, Eur Heart J, 31, 2984, 10.1093/eurheartj/ehq361

Sinusas, 2010, Multimodality cardiovascular molecular imaging: an overview, J Nucl Med, 51, 1S, 10.2967/jnumed.109.068122

Callahan, 2007, Procedure guideline for the use of radiopharmaceuticals 4.0, J Nucl Med Technol, 35, 272, 10.2967/jnmt.107.044156

2000, products, safety and effectiveness of certain PET drugs for specific indications, Fed Regist, 65, 12999

2000, FDG F-18 injection, ammonia N 13 injection, and sodium fluoride F-18 injection, Fed Regist, 65, 13010

2009, Current good manufacturing practice (CGMP) for positron emission tomography drug products, Fed Regist, 74, 65409

2009, current good manufacturing practice, Fed Regist, 74, 65538

Harapanhalli, 2010, Food and Drug Administration requirements for testing and approval of new radiopharmaceuticals, Semin Nucl Med, 40, 364, 10.1053/j.semnuclmed.2010.05.002

Park, 2001, Metabolism of fluorine-containing drugs, Annu Rev Pharmacol Toxicol, 41, 443, 10.1146/annurev.pharmtox.41.1.443

Maecke, 2007, 68Ga-PET radiopharmacy: a generator-based alternative to 18F radiopharmacy, Ernst Schering Res Found Workshop, 62, 215, 10.1007/978-3-540-49527-7_8

Zhernosekov, 2007, Processing of generator-produced 68 Ga for medical application, J Nucl Med, 48, 1741, 10.2967/jnumed.107.040378

Breeman, 2007, The 68 Ge/68Ga generator has high potential, but when can we use 68 Ga-labelled tracers in clinical routine?, Eur J Nucl Med Mol Imaging, 34, 978, 10.1007/s00259-007-0387-4

Williams, 2005, A comparison of PET imaging characteristics of various copper radioisotopes, Eur J Nucl Med Mol Imaging, 32, 1473, 10.1007/s00259-005-1906-9

Holland, 2009, Standardized methods for the production of high specific-activity zirconium-89, Nucl Med Biol, 36, 729, 10.1016/j.nucmedbio.2009.05.007

Wu, 2009, Antibodies and antimatter: the resurgence of immuno-PET, J Nucl Med, 50, 2, 10.2967/jnumed.108.056887

Rice, 2011, The next generation of PET radiopharmaceuticals in oncology, Semin Nucl Med, 41, 265, 10.1053/j.semnuclmed.2011.02.002

Breeman, 2011, 68Ga-labeled DOTA-peptides and 68Ga-labeled radiopharmaceuticals for PET, Semin Nucl Med, 41, 315, 10.1053/j.semnuclmed.2011.02.001

Vallabhajosula, 2011, PET radiopharmaceuticals for imaging brain beta amyloid (Aβ), Semin Nucl Med, 41, 282, 10.1053/j.semnuclmed.2011.02.005

Lister-James, 2011, Florbetapir F-18: a histopathologically-validated β-amyloid PET imaging agent, Semin Nucl Med, 41, 300, 10.1053/j.semnuclmed.2011.03.001

Yu, 2011, The next generation of cardiac PET imaging agent: discovery of Flurpiridaz F 18 for detection of coronary disease, Semin Nucl Med, 41, 305, 10.1053/j.semnuclmed.2011.02.004

Graham, 2010, The Clinical Trials Network of the Society of Nuclear Medicine, Semin Nucl Med, 40, 327, 10.1053/j.semnuclmed.2010.03.006

Blau, 1962, A new isotope for bone scanning, J Nucl Med, 3, 332

Blake, 2001, Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate, Semin Nucl Med, 31, 28, 10.1053/snuc.2001.18742

Even-Sapir, 2007, 18F-fluoride positron emission tomography and positron emission tomography/computed tomography, Semin Nucl Med, 37, 462, 10.1053/j.semnuclmed.2007.07.002

Grant, 2008, Skeletal PET with 18F-fluoride: applying new technology to an old tracer, J Nucl Med, 49, 68, 10.2967/jnumed.106.037200

Segall, 2010, SNM practice guideline for sodium 18 F-fluoride PET/CT bone scans 1.0, J Nucl Med, 51, 1813, 10.2967/jnumed.110.082263

Drzezga, 2008, Basic pathologies of neurodegenerative dementias and their relevance for state-of-the-art molecular imaging studies, Eur J Nucl Med Mol Imaging, 35, S4, 10.1007/s00259-007-0697-6

Forman, 2007, Cortical biochemistry in MCI and Alzheimer disease: lack of correlation with clinical diagnosis, Neurology, 68, 10.1212/01.wnl.0000256373.39415.b1

Mathis, 2007, Impact of amyloid imaging on drug development in Alzheimer's disease, Nucl Med Biol, 34, 809, 10.1016/j.nucmedbio.2007.06.015

Thal, 2006, The role of biomarkers in clinical trials for Alzheimer disease and associated disorders, Alzheimer Dis Assoc Disord, 20, 6, 10.1097/01.wad.0000191420.61260.a8

Mathis, 2003, Synthesis and evaluation of 11C-labeled 6-substituted 2-aryl benzothiazoles as amyloid imaging agents, J Med Chem, 46, 2740, 10.1021/jm030026b

Klunk, 2004, Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B, Ann Neurol, 55, 306, 10.1002/ana.20009

Kung, 2004, Binding of two potential imaging agents targeting amyloid plaques in postmortem brain tissues of patients with Alzheimer's disease, Brain Res, 1025, 98, 10.1016/j.brainres.2004.08.004

Zhang, 2005, F-18 stilbenes as PET imaging agents for detecting β-amyloid plaques in the brain, J Med Chem, 48, 5980, 10.1021/jm050166g

Choi, 2009, Preclinical properties of 18F-AV-45: a PET agent for Aβ plaques in the brain, J Nucl Med, 50, 1887, 10.2967/jnumed.109.065284

Clark, 2011, Use of florbetapir-PET for imaging β-amyloid pathology, JAMA, 305, 275, 10.1001/jama.2010.2008

Kolata G: F.D.A. Sees Promise in Alzheimer's Imaging Drug, The New York Times, January 20, 2011

Rowe, 2008, Imaging of amyloid β in Alzheimer's disease with 1F-BAY94-9172, a novel PET tracer: proof of mechanism, Lancet Neurol, 7, 129, 10.1016/S1474-4422(08)70001-2

Koole, 2009, Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging, J Nucl Med, 50, 818, 10.2967/jnumed.108.060756

Nelissen, 2009, Phase 1 study of the Pittsburgh compound B derivative 18 F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease, J Nucl Med, 50, 1251, 10.2967/jnumed.109.063305

Vandenberghe, 2010, 18F-Flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial, Ann Neurol, 68, 319, 10.1002/ana.22068

Klunk, 2008, The future of amyloid-beta imaging: a tale of radionuclides and tracer proliferation, Curr Opin Neurol, 21, 683, 10.1097/WCO.0b013e3283168e1a

Kilbourn, 1997, In vivo radiotracers for vesicular neurotransmitter transporters, Nucl Med Biol, 24, 615, 10.1016/S0969-8051(97)00101-7

Frey, 1996, Presynaptic monoaminergic vesicles in Parkinsons's disease and normal aging, Ann Neurol, 40, 873, 10.1002/ana.410400609

Kung, 2007, Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters, Nucl Med Biol, 34, 239, 10.1016/j.nucmedbio.2006.12.005

Rowe, 2010, SNM highlights lecture: neuroscience, J Nucl Med, 51, 31N

Kung, 2008, In vivo imaging of beta-cell mass in rats using 18 F–FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus, J Nucl Med, 49, 1171, 10.2967/jnumed.108.051680

Harris, 2008, VMAT2 gene expression and function as it applies to imaging beta-cell mass, J Mol Med, 86, 5, 10.1007/s00109-007-0242-x

Murthy, 2008, Whole body [11C]-dihydrotetrabenazine imaging of baboons: biodistribution and human radiation dosimetry estimates, Eur J Nucl Med Mol Imaging, 35, 790, 10.1007/s00259-007-0648-2

Lin, 2010, Whole-body biodistribution and radiation dosimetry of 18F-FP-(+)-DTBZ (18F-AV-133): a novel vesicular monoamine transporter 2 imaging agent, J Nucl Med, 51, 1480, 10.2967/jnumed.110.078196

Goland, 2009, 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls, J Nucl Med, 50, 382, 10.2967/jnumed.108.054866

Mikkola, 2010, Assessment of islet specificity of dihydrotetrabenazine radiotracer binding in rat and human pancreas, J Nucl Med, 51, 1439, 10.2967/jnumed.109.074492

Ghosh, 2010, Assessment of myocardial ischaemia and viability: role of positron emission tomography, Eur Heart J, 31, 2984, 10.1093/eurheartj/ehq361

Camici, 2009, The clinical value of myocardial blood flow measurement, J Nucl Med, 50, 1076, 10.2967/jnumed.108.054478

Schwaiger, 2003, From thallium scan to molecular imaging, Mol Imaging Biol, 4, 387, 10.1016/S1536-1632(02)00116-6

Berman, 2007, Comparative use of radionuclide stress testing, coronary artery calcium scanning, and noninvasive coronary angiography for diagnostic and prognostic cardiac assessment, Semin Nucl Med, 37, 2, 10.1053/j.semnuclmed.2006.08.002

Schelbert, 2004, Positron emission tomography of the heart: methodology, findings in the normal and disease heart, and clinical applications, in Phelps ME (ed): PET: Molecular Imaging and Its Clinical Applications, New York, Springer

Lin, 2001, Quantification of myocardial perfusion in human subjects using 82 Rb and wavelet-based noise reduction, J Nucl Med, 42, 201

Marshall, 2001, Kinetic analysis of 125I-iodorotenone as a deposited myocardial flow tracer: comparison with 99mTc-sestamibi, J Nucl Med, 42, 272

Madar, 2006, Characterization of uptake of the new PET imaging compound 18 F-fluorobenzyl triphenyl phosphonium in dog myocardium, J Nucl Med, 47, 1359

Yalamanchili, 2007, Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent, J Nucl Cardiol, 14, 782, 10.1016/j.nuclcard.2007.07.009

Yu, 2005, [18F]-RP1012: a novel myocardial perfusion imaging agent for use with positron emission tomography (PET), Circulation, 112, II-761

Yu, 2007, BMS-747158-02: a novel PET myocardial perfusion imaging agent, J Nucl Cardiol, 14, 789, 10.1016/j.nuclcard.2007.07.008

Huisman, 2008, Initial characterization of an 18F-labeled myocardial perfusion tracer, J Nucl Med, 49, 630, 10.2967/jnumed.107.044727

Schwaiger, 2010, SNM highlights lecture: cardiovascular disease, J Nucl Med, 51, 15N

Shoup, 1999, Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-l-carboxylic acid to image brain tumors, J Nucl Med, 40, 331

Schuster, 2007, Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma, J Nucl Med, 48, 56

Chen, 2007, Clinical applications of PET in brain tumors, J Nucl Med, 48, 1468, 10.2967/jnumed.106.037689

Larson, 2010, SNM highlights lecture: oncology, J Nucl Med, 51, 19N

Schuster, 2010, Report of a clinical trial of anti-1 amino 3 [18F]fluorocyclobutane-1-carboxylic acid (anti-[18F]FACBC) PET-CT in recurrent prostate carcinoma, J Nucl Med, 51, 456

Krasikova, 2011, 4-[18F]Fluoroglutamic acid (BAY 85-8050), a new amino acid radiotracer for PET imaging of tumors: synthesis and in vitro characterization, J Med Chem, 54, 406, 10.1021/jm101068q

Krause, 2010, [18F]BAY 85-8050 (TIM-1): a novel tumor specific probe for PET/CT imaging—first clinical results, J Nucl Med, 51, 118

Kumar, 2003, Integrin αVβ3 as a therapeutic target for blocking tumor-induced angiogenesis, Curr Drug Targets, 4, 123, 10.2174/1389450033346830

Friedlander, 1995, Definition of two angiogenic pathways by distinct αV integrins, Science, 270, 1500, 10.1126/science.270.5241.1500

Haubner, 1999, Radiolabeled αVβ3 integrin antagonists: a new class of tracers for tumor targeting, J Nucl Med, 40, 1061

Haubner, 2005, Noninvasive visualization of the activated alpha v beta3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD, PLoS Med, 2, e70, 10.1371/journal.pmed.0020070

Line, 2005, Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates, J NuclMed, 46, 1552

Kenny, 2008, Phase I trial of the positron-emitting ArgGlyAsp (RGD) peptide radioligand 18 F-AH111585 in breast cancer patients, J Nucl Med, 49, 879, 10.2967/jnumed.107.049452

Indrevoll, 2006, NC-100717: a versatile RGD peptide scaffold for angiogenesis imaging, Bioorg Med Chem Lett, 16, 6190, 10.1016/j.bmcl.2006.09.033

Mena, 2010, A novel PET imaging approach for detection of tumor angiogenesis via the expression of vβ3 integrin using an RGD peptide, [18F]fluciclatide (AH111585), J Nucl Med, 51, 505

Szabo, 2011, Molecular imaging of the kidneys, Semin Nucl Med, 41, 20, 10.1053/j.semnuclmed.2010.09.003

Divgi, 2007, Preoperative characterization of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial, Lancet Oncol, 8, 304, 10.1016/S1470-2045(07)70044-X

Cleaver, 1967, Thymidine metabolism and cell kinetics, Front Biol, 6, 43

Christman, 1972, Detection of DNA synthesis in intact organisms with positron-emitting methyl-[C-11]-thymidine, Proc Natl Acad Sci U S A, 69, 988, 10.1073/pnas.69.4.988

Shields, 2003, PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls, J Nucl Med, 44, 1432

Bading, 2008, Imaging of cell proliferation: status and prospects, J Nucl Med, 49, 64S, 10.2967/jnumed.107.046391

Salskov, 2007, FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]fluorothymidine, Semin Nucl Med, 37, 429, 10.1053/j.semnuclmed.2007.08.001

Conti, 2008, In vivo measurement of cell proliferation in canine brain tumor using C-11 labeled FMAU and PET, Nucl Med Biol, 35, 131, 10.1016/j.nucmedbio.2007.09.003

Sun, 2005, Imaging DNA synthesis in vivo with [F-18]FMAU and positron emission tomography in patients with cancer, Eur J Nucl Med Mol Imaging, 32, 15, 10.1007/s00259-004-1713-8

Krohn, 2008, Molecular imaging of hypoxia, J Nucl Med, 49, 129S, 10.2967/jnumed.107.045914

Foo, 2004, Functional Imaging of intra-tumoral hypoxia, Mol Imaging Biol, 6, 291, 10.1016/j.mibio.2004.06.007

Rasey, 1987, Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells, Radiat Res, 111, 292, 10.2307/3576986

Mees, 2009, Molecular imaging of hypoxia with radiolabelled agents, Eur J Nucl Med Mol Imaging, 36, 1674, 10.1007/s00259-009-1195-9

Lee, 2007, Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole, Semin Nucl Med, 37, 451, 10.1053/j.semnuclmed.2007.07.001

Fujibayashi, 1997, Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential, J Nucl Med, 38, 1155

Maurer, 2002, Studies on the mechanism of hypoxic selectivity in copper bis(thiosemicarbazone) radiopharmaceuticals, J Med Chem, 45, 1420, 10.1021/jm0104217

Lewis, 1999, Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model, J Nucl Med, 40, 177

Lewis, 2001, PET imaging of hypoxia, Q J Nucl Med, 45, 183

Reubi, 2003, Peptide receptors as molecular targets for cancer diagnosis and therapy, Endocr Rev, 24, 389, 10.1210/er.2002-0007

Reubi, 1992, Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implication, J Steroid Biochem Mol Biol, 43, 27, 10.1016/0960-0760(92)90184-K

Reubi, 2005, Candidates for peptide receptor radiotherapy today and in the future, J Nucl Med, 46, 67S

Maecke, 2005, 68Ga-labeled peptides in tumor imaging, J Nucl Med, 46, 172S

Rufini, 2007, Imaging of neuroendocrine tumors, Semin Nucl Med, 36, 228, 10.1053/j.semnuclmed.2006.03.007

Gabriel, 2007, 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT, J Nucl Med, 2007, 508, 10.2967/jnumed.106.035667

Prasad, 2010, Detection of unknown primary neuroendocrine tumors CUP-NET using 68Ga-DOTA-NOC receptor PET/CT, Eur J Nucl Med Mol Imaging, 37, 67, 10.1007/s00259-009-1205-y

Virgolini, 2010, Procedure guidelines for PET/CT tumor imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE, Eur J Nucl Med Mol Imaging, 37, 2004, 10.1007/s00259-010-1512-3

Jacobs, 2005, Human gene therapy and imaging in neurological diseases, Eur J Nucl Med Mol Imaging, 32, S358, 10.1007/s00259-005-1960-3

Bruehlmeier, 2004, Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O, J Nucl Med, 45, 1851

Gabriel, 2007, 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT, J Nucl Med, 48, 508, 10.2967/jnumed.106.035667