A Brief Introduction to Manifold Optimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lai, R., Wen, Z., Yin, W., Gu, X., Lui, L.M.: Folding-free global conformal mapping for genus-0 surfaces by harmonic energy minimization. J. Sci. Comput. 58, 705–725 (2014)
Schoen, R.M., Yau, S.-T.: Lectures on Harmonic Maps, vol. 2. American Mathematical Society, Providence (1997)
Simon, D., Abell, J.: A majorization algorithm for constrained correlation matrix approximation. Linear Algebra Appl. 432, 1152–1164 (2010)
Gao, Y., Sun, D.: A majorized penalty approach for calibrating rank constrained correlation matrix problems, tech. report, National University of Singapore (2010)
Waldspurger, I., d’Aspremont, A., Mallat, S.: Phase recovery, maxcut and complex semidefinite programming. Math. Program. 149, 47–81 (2015)
Cai, J.-F., Liu, H., Wang, Y.: Fast rank-one alternating minimization algorithm for phase retrieval. J. Sci. Comput. 79, 128–147 (2019)
Hu, J., Jiang, B., Liu, X., Wen, Z.: A note on semidefinite programming relaxations for polynomial optimization over a single sphere. Sci. China Math. 59, 1543–1560 (2016)
Singer, A., Shkolnisky, Y.: Three-dimensional structure determination from common lines in cryo-em by eigenvectors and semidefinite programming. SIAM J. Imaging Sci. 4, 543–572 (2011)
Liu, X., Wen, Z., Zhang, Y.: An efficient Gauss–Newton algorithm for symmetric low-rank product matrix approximations. SIAM J. Optim. 25, 1571–1608 (2015)
Liu, X., Wen, Z., Zhang, Y.: Limited memory block Krylov subspace optimization for computing dominant singular value decompositions. SIAM J. Sci. Comput. 35, A1641–A1668 (2013)
Wen, Z., Yang, C., Liu, X., Zhang, Y.: Trace-penalty minimization for large-scale eigenspace computation. J. Sci. Comput. 66, 1175–1203 (2016)
Wen, Z., Zhang, Y.: Accelerating convergence by augmented Rayleigh–Ritz projections for large-scale eigenpair computation. SIAM J. Matrix Anal. Appl. 38, 273–296 (2017)
Zhang, J., Wen, Z., Zhang, Y.: Subspace methods with local refinements for eigenvalue computation using low-rank tensor-train format. J. Sci. Comput. 70, 478–499 (2017)
Oja, E., Karhunen, J.: On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J. Math. Anal. Appl. 106, 69–84 (1985)
Shamir, O.: A stochastic PCA and SVD algorithm with an exponential convergence rate. Int. Conf. Mach. Learn. 144–152 (2015)
Li, C.J., Wang, M., Liu, H., Zhang, T.: Near-optimal stochastic approximation for online principal component estimation. Math. Program. 167, 75–97 (2018)
Pulay, P.: Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 73, 393–398 (1980)
Toth, A., Ellis, J.A., Evans, T., Hamilton, S., Kelley, C., Pawlowski, R., Slattery, S.: Local improvement results for Anderson acceleration with inaccurate function evaluations. SIAM J. Sci. Comput. 39, S47–S65 (2017)
Zhang, X., Zhu, J., Wen, Z., Zhou, A.: Gradient type optimization methods for electronic structure calculations. SIAM J. Sci. Comput. 36, C265–C289 (2014)
Wen, Z., Milzarek, A., Ulbrich, M., Zhang, H.: Adaptive regularized self-consistent field iteration with exact Hessian for electronic structure calculation. SIAM J. Sci. Comput. 35, A1299–A1324 (2013)
Dai, X., Liu, Z., Zhang, L., Zhou, A.: A conjugate gradient method for electronic structure calculations. SIAM J. Sci. Comput. 39, A2702–A2740 (2017)
Zhao, Z., Bai, Z.-J., Jin, X.-Q.: A Riemannian Newton algorithm for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 752–774 (2015)
Zhang, L., Li, R.: Maximization of the sum of the trace ratio on the Stiefel manifold, II: computation. Sci. China Math. 58, 1549–1566 (2015)
Gao, B., Liu, X., Chen, X., Yuan, Y.: A new first-order algorithmic framework for optimization problems with orthogonality constraints. SIAM J. Optim. 28, 302–332 (2018)
Lai, R., Lu, J.: Localized density matrix minimization and linear-scaling algorithms. J. Comput. Phys. 315, 194–210 (2016)
Ulbrich, M., Wen, Z., Yang, C., Klockner, D., Lu, Z.: A proximal gradient method for ensemble density functional theory. SIAM J. Sci. Comput. 37, A1975–A2002 (2015)
Jiang, B., Liu, Y.-F., Wen, Z.: L\_p-norm regularization algorithms for optimization over permutation matrices. SIAM J. Optim. 26, 2284–2313 (2016)
Zhang, J., Liu, H., Wen, Z., Zhang, S.: A sparse completely positive relaxation of the modularity maximization for community detection. SIAM J. Sci. Comput. 40, A3091–A3120 (2018)
Cho, M., Lee, J.: Riemannian approach to batch normalization. Adv. Neural Inf. Process. Syst. 5225–5235 (2017). https://papers.nips.cc/paper/7107-riemannian-approach-to-batch-normalization.pdf
Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the lasso. J. Comput. Graph. Stat. 12, 531–547 (2003)
Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4, 333–361 (2012)
Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 23, 1214–1236 (2013)
Wei, K., Cai, J.-F., Chan, T.F., Leung, S.: Guarantees of Riemannian optimization for low rank matrix recovery. SIAM J. Matrix Anal. Appl. 37, 1198–1222 (2016)
Cambier, L., Absil, P.-A.: Robust low-rank matrix completion by Riemannian optimization. SIAM J. Sci. Comput. 38, S440–S460 (2016)
Zhang, Y., Lau, Y., Kuo, H.-w., Cheung, S., Pasupathy, A., Wright, J.: On the global geometry of sphere-constrained sparse blind deconvolution. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 4894–4902 (2017)
Zass, R., Shashua, A.: Nonnegative sparse PCA. Adv. Neural Inf. Process. Syst. 1561–1568 (2007). https://papers.nips.cc/paper/3104-nonnegative-sparse-pca
Montanari, A., Richard, E.: Non-negative principal component analysis: message passing algorithms and sharp asymptotics. IEEE Trans. Inf. Theory 62, 1458–1484 (2016)
Carson, T., Mixon, D.G., Villar, S.: Manifold optimization for K-means clustering. Int. Conf. Sampl. Theory. Appl. SampTA 73–77. IEEE (2017)
Liu, H., Cai, J.-F., Wang, Y.: Subspace clustering by (k, k)-sparse matrix factorization. Inverse Probl. Imaging 11, 539–551 (2017)
Xie, T., Chen, F.: Non-convex clustering via proximal alternating linearized minimization method. Int. J. Wavelets Multiresolut. Inf. Process. 16, 1840013 (2018)
Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2008)
Absil, P.-A., Gallivan, K.A.: Joint diagonalization on the oblique manifold for independent component analysis. Proc. IEEE Int. Conf. Acoust. Speech Signal Process 5, 945–958 (2006)
Journée, M., Bach, F., Absil, P.-A., Sepulchre, R.: Low-rank optimization on the cone of positive semidefinite matrices. SIAM J. Optim. 20, 2327–2351 (2010)
Massart, E., Absil, P.-A.: Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices. SIAM J. Matrix Anal. Appl. 41, 171–198 (2020)
Yang, W.H., Zhang, L.-H., Song, R.: Optimality conditions for the nonlinear programming problems on Riemannian manifolds. Pac. J. Optim. 10, 415–434 (2014)
Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37, 177–219 (1982)
Smith, S.T.: Optimization techniques on Riemannian manifolds. Fields Institute Communications 3 (1994)
Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Riemannian optimization. BIT Numer. Math. 54, 447–468 (2014)
Hu, J., Milzarek, A., Wen, Z., Yuan, Y.: Adaptive quadratically regularized Newton method for Riemannian optimization. SIAM J. Matrix Anal. Appl. 39, 1181–1207 (2018)
Absil, P.-A., Malick, J.: Projection-like retractions on matrix manifolds. SIAM J. Optim. 22, 135–158 (2012)
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)
Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142, 397–434 (2013)
Jiang, B., Dai, Y.-H.: A framework of constraint preserving update schemes for optimization on Stiefel manifold. Math. Program. 153, 535–575 (2015)
Zhu, X.: A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Comput. Optim. Appl. 67, 73–110 (2017)
Siegel, J.W.: Accelerated optimization with orthogonality constraints, arXiv:1903.05204 (2019)
Iannazzo, B., Porcelli, M.: The Riemannian Barzilai–Borwein method with nonmonotone line search and the matrix geometric mean computation. IMA J. Numer. Anal. 00, 1–23 (2017)
Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1999)
Nishimori, Y., Akaho, S.: Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 67, 106–135 (2005)
Huang, W.: Optimization algorithms on Riemannian manifolds with applications, Ph.D. thesis, The Florida State University (2013)
Lezcano-Casado, M., Martínez-Rubio, D.: Cheap orthogonal constraints in neural networks: a simple parametrization of the orthogonal and unitary group, arXiv:1901.08428 (2019)
Li, J., Fuxin, L., Todorovic, S.: Efficient Riemannian optimization on the Stiefel manifold via the Cayley transform, Conference arXiv:2002.01113 (2020)
Huang, W., Gallivan, K.A., Absil, P.-A.: A Broyden class of quasi-Newton methods for Riemannian optimization. SIAM J. Optim. 25, 1660–1685 (2015)
Huang, W., Absil, P.-A., Gallivan, K.A.: Intrinsic representation of tangent vectors and vector transports on matrix manifolds. Numer. Math. 136, 523–543 (2017)
Hu, J., Milzarek, A., Wen, Z., Yuan, Y.: Adaptive regularized Newton method for Riemannian optimization, arXiv:1708.02016 (2017)
Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14, 1043–1056 (2004)
Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds, vol. 297. Springer, Berlin (1994)
Absil, P.-A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7, 303–330 (2007)
Qi, C.: Numerical optimization methods on Riemannian manifolds, Ph.D. thesis, Florida State University (2011)
Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)
Seibert, M., Kleinsteuber, M., Hüper, K.: Properties of the BFGS method on Riemannian manifolds. Mathematical System Theory C Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday, pp. 395–412 (2013)
Huang, W., Absil, P.-A., Gallivan, K.A.: A Riemannian symmetric rank-one trust-region method. Math. Program. 150, 179–216 (2015)
Huang, W., Absil, P.-A., Gallivan, K.: A Riemannian BFGS method without differentiated retraction for nonconvex optimization problems. SIAM J. Optim. 28, 470–495 (2018)
Hu, J., Jiang, B., Lin, L., Wen, Z., Yuan, Y.-X.: Structured quasi-Newton methods for optimization with orthogonality constraints. SIAM J. Sci. Comput. 41, A2239–A2269 (2019)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)
Wu, X., Wen, Z., Bao, W.: A regularized Newton method for computing ground states of Bose–Einstein condensates. J. Sci. Comput. 73, 303–329 (2017)
Kass, R.E.: Nonlinear regression analysis and its applications. J. Am. Stat. Assoc. 85, 594–596 (1990)
Sun, W., Yuan, Y.: Optimization Theory and Methods: Nonlinear Programming, vol. 1. Springer, Berlin (2006)
Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Autom. Control. 58, 2217–2229 (2013)
Zhang, H., Sra, S.: First-order methods for geodesically convex optimization, In: Conference on Learning Theory, pp. 1617–1638 (2016)
Liu, Y., Shang, F., Cheng, J., Cheng, H., Jiao, L.: Accelerated first-order methods for geodesically convex optimization on Riemannian manifolds. Adv. Neural Inf. Process. Syst. 4868–4877 (2017)
Zhang, H., Reddi, S.J., Sra, S.: Riemannian SVRG: fast stochastic optimization on Riemannian manifolds. Adv. Neural Inf. Process. Syst. 4592–4600 (2016)
Sato, H., Kasai, H., Mishra, B.: Riemannian stochastic variance reduced gradient algorithm with retraction and vector transport. SIAM J. Optim. 29, 1444–1472 (2019)
Jiang, B., Ma, S., So, A.M.-C., Zhang, S.: Vector transport-free svrg with general retraction for Riemannian optimization: Complexity analysis and practical implementation, arXiv:1705.09059 (2017)
Bécigneul, G., Ganea, O.-E.: Riemannian adaptive optimization methods, arXiv:1810.00760 (2018)
Dirr, G., Helmke, U., Lageman, C.: Nonsmooth Riemannian optimization with applications to sphere packing and grasping. In: Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, pp. 29–45. Springer, Berlin (2007)
Borckmans, P.B., Selvan, S.E., Boumal, N., Absil, P.-A.: A Riemannian subgradient algorithm for economic dispatch with valve-point effect. J Comput. Appl. Math. 255, 848–866 (2014)
Hosseini, S.: Convergence of nonsmooth descent methods via Kurdyka–Lojasiewicz inequality on Riemannian manifolds, Hausdorff Center for Mathematics and Institute for Numerical Simulation, University of Bonn (2015). https://ins.uni-bonn.de/media/public/publication-media/8_INS1523.pdf
Grohs, P., Hosseini, S.: Nonsmooth trust region algorithms for locally Lipschitz functions on Riemannian manifolds. IMA J. Numer. Anal. 36, 1167–1192 (2015)
Hosseini, S., Uschmajew, A.: A Riemannian gradient sampling algorithm for nonsmooth optimization on manifolds. SIAM J. Optim. 27, 173–189 (2017)
Bacák, M., Bergmann, R., Steidl, G., Weinmann, A.: A second order nonsmooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38, A567–A597 (2016)
de Carvalho Bento, G., da Cruz Neto, J.X., Oliveira, P.R.: A new approach to the proximal point method: convergence on general Riemannian manifolds. J Optim. Theory Appl. 168, 743–755 (2016)
Bento, G., Neto, J., Oliveira, P.: Convergence of inexact descent methods for nonconvex optimization on Riemannian manifolds, arXiv:1103.4828 (2011)
Bento, G.C., Ferreira, O.P., Melo, J.G.: Iteration-complexity of gradient, subgradient and proximal point methods on Riemannian manifolds. J Optim. Theory Appl. 173, 548–562 (2017)
Chen, S., Ma, S., So, A.M.-C., Zhang, T.: Proximal gradient method for nonsmooth optimization over the Stiefel manifold. SIAM J. Optim. 30, 210–239 (2019)
Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. J. Sci. Comput. 76, 1–26 (2018)
Huang, W., Wei, K.: Riemannian proximal gradient methods, arXiv:1909.06065 (2019)
Chen, S., Ma, S., Xue, L., Zou, H.: An alternating manifold proximal gradient method for sparse PCA and sparse cca, arXiv:1903.11576 (2019)
Huang, W., Wei, K.: Extending FISTA to Riemannian optimization for sparse PCA, arXiv:1909.05485 (2019)
Lai, R., Osher, S.: A splitting method for orthogonality constrained problems. J. Sci. Comput. 58, 431–449 (2014)
Kovnatsky, A., Glashoff, K., Bronstein, M.M.: Madmm: a generic algorithm for non-smooth optimization on manifolds. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision ECCV, pp. 680–696. Springer, Berlin (2016)
Wang, Y., Yin, W., Zeng, J.: Global convergence of admm in nonconvex nonsmooth optimization. J. Sci. Comput. 78, 29–63 (2019)
Zhang, J., Ma, S., Zhang, S.: Primal-dual optimization algorithms over Riemannian manifolds: an iteration complexity analysis, arXiv:1710.02236 (2017)
Birgin, E.G., Haeser, G., Ramos, A.: Augmented lagrangians with constrained subproblems and convergence to second-order stationary points. Comput. Optim. Appl. 69, 51–75 (2018)
Liu, C., Boumal, N.: Simple algorithms for optimization on Riemannian manifolds with constraints, arXiv:1901.10000 (2019)
Boumal, N., Absil, P.-A., Cartis, C.: Global rates of convergence for nonconvex optimization on manifolds. IMA J. Numer. Anal. 39, 1–33 (2018)
Zhang, J., Zhang, S.: A cubic regularized Newton’s method over Riemannian manifolds, arXiv:1805.05565 (2018)
Agarwal, N., Boumal, N., Bullins, B., Cartis, C.: Adaptive regularization with cubics on manifolds with a first-order analysis, arXiv:1806.00065 (2018)
Vishnoi, N.K.: Geodesic convex optimization: differentiation on manifolds, geodesics, and convexity, arXiv:1806.06373 (2018)
Liu, X., Wang, X., Wen, Z., Yuan, Y.: On the convergence of the self-consistent field iteration in Kohn–Sham density functional theory. SIAM J. Matrix Anal. Appl. 35, 546–558 (2014)
Liu, X., Wen, Z., Wang, X., Ulbrich, M., Yuan, Y.: On the analysis of the discretized Kohn-Sham density functional theory. SIAM J. Numer. Anal. 53, 1758–1785 (2015)
Cai, Y., Zhang, L.-H., Bai, Z., Li, R.-C.: On an eigenvector-dependent nonlinear eigenvalue problem. SIAM J. Matrix Anal. Appl. 39, 1360–1382 (2018)
Bai, Z., Lu, D., Vandereycken, B.: Robust Rayleigh quotient minimization and nonlinear eigenvalue problems. SIAM J. Sci. Comput. 40, A3495–A3522 (2018)
Yuan, H., Gu, X., Lai, R., Wen, Z.: Global optimization with orthogonality constraints via stochastic diffusion on manifold. J. Sci. Comput. 80, 1139–1170 (2019)
Barvinok, A.I.: Problems of distance geometry and convex properties of quadratic maps. Discrete Comput. Geom. 13, 189–202 (1995)
Pataki, G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 23, 339–358 (1998)
Burer, S., Monteiro, R.D.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. 95, 329–357 (2003)
Boumal, N., Voroninski, V., Bandeira, A.: The non-convex Burer–Monteiro approach works on smooth semidefinite programs. In: Advances in Neural Information Processing Systems, pp. 2757–2765 (2016). https://papers.nips.cc/paper/6517-the-non-convex-burer-monteiro-approach-works-on-smooth-semidefinite-programs.pdf
Mei, S., Misiakiewicz, T., Montanari, A., Oliveira, R.I.: Solving SDPs for synchronization and maxcut problems via the Grothendieck inequality, arXiv:1703.08729 (2017)
Bandeira, A.S., Boumal, N., Voroninski, V.: On the low-rank approach for semidefinite programs arising in synchronization and community detection. Conf. Learn. Theor. 361–382 (2016)
Burer, S., Monteiro, R.D.: Local minima and convergence in low-rank semidefinite programming. Math. Program. 103, 427–444 (2005)
Boumal, N., Voroninski, V., Bandeira, A.S.: Deterministic guarantees for Burer–Monteiro factorizations of smooth semidefinite programs, arXiv:1804.02008 (2018)