A Boundedness Criterion via Atoms for Linear Operators in Hardy Spaces

Dachun Yang1, Yuan Zhou1
1School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aoki, T.: Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18, 588–594 (1942)

Bownik, M.: Boundedness of operators on Hardy spaces via atomic decompositions. Proc. Am. Math. Soc. 133, 3535–3542 (2005)

Calderón, A.P.: An atomic decomposition of distributions in parabolic H p spaces. Adv. Math. 25, 216–225 (1977)

Coifman, R.R.: A real variable characterization of H p . Studia Math. 51, 269–274 (1974)

Coifman, R.R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72(9), 247–286 (1993)

Fefferman, C., Stein, E.M.: H p spaces of several variables. Acta Math. 129, 137–193 (1972)

Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982)

Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79. American Mathematical Society, Providence (1991)

García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam (1985)

Grafakos, L.: Classical and Modern Fourier Analysis. Prentice Hall, Upper Saddle River (2004)

Hu, G., Yang, D., Zhou, Y.: Boundedness of singular integrals in Hardy spaces on spaces of homogeneous type. Taiwan. J. Math. (2008, to appear)

Latter, R.H.: A characterization of H p (ℝ n ) in terms of atoms. Studia Math. 62, 93–101 (1978)

Meda, S., Sjögren, P., Vallarino, M.: On the H 1–L 1 boundedness of operators. Proc. Am. Math. Soc. (2008, to appear)

Meyer, Y., Taibleson, M., Weiss, G.: Some functional analytic properties of the spaces B q generated by blocks. Indiana Univ. Math. J. 34, 493–515 (1985)

Meyer, Y., Coifman, R.R.: Wavelets. Calderón–Zygmund and Multilinear Operators. Cambridge University Press, Cambridge (1997)

Müller, S.: Hardy space methods for nonlinear partial differential equations. Tatra Mt. Math. Publ. 4, 159–168 (1994)

Semmes, S.: A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller. Commun. Partial Differ. Equ. 19, 277–319 (1994)

Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables. I. The theory of H p -spaces. Acta Math. 103, 25–62 (1960)

Taibleson, M.H., Weiss, G.: The molecular characterization of certain Hardy spaces. Astérisque 77, 67–149 (1980)

Triebel, H.: Fractals and Spectra. Birkhäuser, Basel (1997)

Triebel, H.: The Structure of Functions. Birkhäuser, Basel (2001)

Yabuta, K.: A remark on the (H 1,L 1) boundedness. Bull. Fac. Sci. Ibaraki Univ. Ser. A 25, 19–21 (1993)