Đánh giá Thư viện về Nghiên cứu Dấu chân Nước tại Trung Quốc: 2003–2018

Sustainability - Tập 11 Số 18 - Trang 5082
Yongnan Zhu1, Shan Jiang1, Xinxueqi Han2, Xuerui Gao2, Yong Zhao1, Haihong Li1
1State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China,
2Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China

Tóm tắt

Trong bối cảnh an ninh nước ngày càng trở thành một vấn đề quan trọng, việc phân tích xung đột giữa cung và cầu nước đã đạt được tầm quan trọng lớn hơn ở Trung Quốc. Bài báo này chi tiết hóa một đánh giá thư viện về các bài báo được xuất bản từ 2003 đến 2018 về dấu chân nước tại Trung Quốc, một trong những điểm nóng toàn cầu về nghiên cứu tài nguyên nước. Những xu hướng và điểm chính của nghiên cứu dấu chân nước đã được phân tích một cách hệ thống dựa trên 1564 bài báo, bao gồm 1170 công bố gốc bằng tiếng Trung từ cơ sở dữ liệu China National Knowledge Infrastructure và 394 công bố bằng tiếng Anh từ cơ sở dữ liệu Web of Science. Kết quả cho thấy số lượng tài liệu liên quan đến nghiên cứu dấu chân nước đã tăng trưởng đáng kể. Số lượng bài báo công bố tăng từ 104 trong giai đoạn 2003–2006 lên 735 trong giai đoạn 2015–2018. Nghiên cứu dấu chân nước đã được áp dụng vào quản lý tài nguyên nước nông nghiệp, công nghiệp và khu vực để định lượng tác động của các hoạt động con người đối với tài nguyên nước và môi trường. Các chỉ số dấu chân nước đã được rút trích để so sánh giữa các khu vực. Có những đặc điểm rõ ràng của dấu chân nước giữa các vùng tại Trung Quốc, nhưng sự không chắc chắn của kết quả yêu cầu cần có những điều tra xa hơn. Mô hình hóa dấu chân nước và nghiên cứu thực nghiệm ngoài đồng cần thiết để khám phá môi trường sinh thái nước dưới các hệ thống phức tạp.

Từ khóa

#Nghiên cứu dấu chân nước #Trung Quốc #tài nguyên nước #phân tích thư viện #quản lý tài nguyên nước

Tài liệu tham khảo

UN-Water (2018). The United Nations World Water Development Report 2018: Nature-Based Solutions for Water, UN-Water.

Hanjra, 2010, Global water crisis and future food security in an era of climate change, Food Policy, 35, 365, 10.1016/j.foodpol.2010.05.006

Piao, 2010, The impacts of climate change on water resources and agriculture in China, Nature, 467, 43, 10.1038/nature09364

Varis, 2001, China’s 8 challenges to water resources management in the first quarter of the 21st Century, Geomorphology, 41, 93, 10.1016/S0169-555X(01)00107-6

Zhao, 2017, Energy Reduction Effect of the South-to-North Water Diversion Project in China, Sci. Rep. UK, 7, 15956, 10.1038/s41598-017-16157-z

Hoekstra, 2004, Globalisation of water resources: International virtual water flows in relation to crop trade, Glob. Environ. Chang., 15, 45, 10.1016/j.gloenvcha.2004.06.004

Aivazidou, 2018, A water footprint management framework for supply chains under green market behaviour, J. Clean. Prod., 197, 592, 10.1016/j.jclepro.2018.06.171

Hoekstra, 2007, Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resour. Manag., 21, 35, 10.1007/s11269-006-9039-x

Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M., and Mekonnen, M.M. (2011). The Water Footprint Assessment Manual, Earthscan.

ISO (2014). Environmental Management-Water Footprint-Principles, Requirements and Guidelines ISO14046:2014, International Organization for Standardization.

Xu, 2015, Changes in water footprint of crop production in Beijing from 1978 to 2012: A logarithmic mean Divisia index decomposition analysis, J. Clean. Prod., 87, 180, 10.1016/j.jclepro.2014.08.103

Ruini, 2013, Water footprint of a large-sized food company: The case of Barilla pasta production, Water Resour. Ind., 1, 7, 10.1016/j.wri.2013.04.002

Ge, 2011, An Evaluation of China’s Water Footprint, Water Resour. Manag., 25, 2633, 10.1007/s11269-011-9830-1

Zhang, 2017, Mapping of water footprint research: A bibliometric analysis during 2006–2015, J. Clean. Prod., 149, 70, 10.1016/j.jclepro.2017.02.067

Jiang, 2017, Sustainability of water resources for agriculture considering grain production, trade and consumption in China from 2004 to 2013, J. Clean. Prod., 149, 1210, 10.1016/j.jclepro.2017.02.103

2016, The Water Footprint as an indicator of environmental sustainability in water use at the river basin level, Sci. Total Environ., 571, 561, 10.1016/j.scitotenv.2016.07.022

Hong, 2007, “Virtual water”: An unfolding concept in integrated water resources management, Water Resour. Res., 43, W12301

Paterson, 2015, Water Footprint of Cities: A Review and Suggestions for Future Research, Sustainability, 7, 8461, 10.3390/su7078461

Chenoweth, 2014, Review article: Quantifying the human impact on water resources: A critical review of the water footprint concept, Hydrol. Earth Syst. Sci., 10, 2325, 10.5194/hess-18-2325-2014

Schoepflin, 1994, Little scientometrics, big scientometrics…and beyond?, Scientometrics, 30, 375, 10.1007/BF02018107

Schoepflin, 1999, A bibliometric study of reference literature in the sciences and social sciences 1, Inform. Process. Manag., 35, 31, 10.1016/S0306-4573(98)00028-4

Mongeon, 2016, The journal coverage of Web of Science and Scopus: A comparative analysis, Scientometrics, 106, 1, 10.1007/s11192-015-1765-5

Fu, 2013, Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011, Sci. Total Environ., 443, 757, 10.1016/j.scitotenv.2012.11.061

Hood, 2001, The Literature of Bibliometrics, Scientometrics, and Informetrics, Scientometrics, 52, 291, 10.1023/A:1017919924342

Gan, C., and Wang, W. (2014). A Bibliometric Analysis of Social Media Research from the Perspective of Library and Information Science. Digital Services and Information Intelligence, Springer.

Nooy, 2011, Networks of action and events over time. A multilevel discrete-time event history model for longitudinal network data, Soc. Netw., 33, 31, 10.1016/j.socnet.2010.09.003

Zhao, 2014, Driving force analysis of the agricultural water footprint in China based on the LMDI method, Environ. Sci. Technol., 48, 12723, 10.1021/es503513z

Wu, 2015, Application of a simple model to estimate the footprint of CO2/H2O emission from tall forest, J. Forest Res. Jpn., 20, 222, 10.1007/s10310-014-0437-2

Li, 2017, Scenario analysis of tourism’s water footprint for China’s Beijing–Tianjin–Hebei region in 2020: Implications for water policy, J. Sustain. Tour., 26, 127, 10.1080/09669582.2017.1326926

Long, 2003, Estimate and Analysis of Water Footprint in Northwest China, 2000, J. Glaciol. Geocryol., 25, 692

Jiang, 2016, Residential water and energy nexus for conservation and management: A case study of Tianjin, Int. J. Hydrogen Energy, 41, 15919, 10.1016/j.ijhydene.2016.04.181

He, G., Zhao, Y., Wang, L., Jiang, S., and Zhu, Y. (2019). China’s food security challenge: Effects of food habit changes on requirements for arable land and water. J. Clean. Prod.

United Nations (2012). World Urbanization Prospects: The 2011 Revision, Department of Economic and Social Affairs of United Nations.

United Nations (2018). World urbanization prospects: the 2017 revision, Department of Economic and Social Affairs of United Nations.

Wang, 2015, Synthesis Analysis of One Severe Convection Precipitation Event in Jiangsu Using Ground-Based GPS Technology, Atmosphere (Basel), 6, 908, 10.3390/atmos6070908

Zhu, 2017, Flood Simulations and Uncertainty Analysis for the Pearl River Basin Using the Coupled Land Surface and Hydrological Model System, Water, 9, 391, 10.3390/w9060391

Wang, 2008, Rural industries and water pollution in China, J. Environ. Manag., 86, 648, 10.1016/j.jenvman.2006.12.019

Ridoutt, 2012, Water footprint of livestock: Comparison of six geographically defined beef production systems, Int. J. Life Cycle Assess., 17, 165, 10.1007/s11367-011-0346-y

Shang, 2018, China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050, Appl. Energ., 210, 643, 10.1016/j.apenergy.2016.11.008

Joa, 2014, Introduction of a feasible performance indicator for corporate water accounting—A case study on the cotton textile chain, J. Clean. Prod., 82, 143, 10.1016/j.jclepro.2014.06.075

Chao, 2013, Life cycle water use of energy production and its environmental impacts in China, Environ, Sci. Technol., 47, 14459, 10.1021/es402556x

Zhang, 2013, Water footprint factor of energy and materials in textile and garment industry, Dy. Finish., 39, 41

Ma, 2018, How much water is required for coal power generation: An analysis of gray and blue water footprints, Sci. Total Environ., 636, 547, 10.1016/j.scitotenv.2018.04.309

Ding, 2018, Water footprints of energy sources in China: Exploring options to improve water efficiency, J. Clean. Prod., 174, 1021, 10.1016/j.jclepro.2017.10.273

Xu, 2013, LCA-based product water footprint and a sase study, J. Nat. Resour., 28, 873

Huang, 2014, Water availability footprint of milk and milk products from large-scale dairy production systems in Northeast China, J. Clean. Prod., 79, 91, 10.1016/j.jclepro.2014.05.043

Hu, 2016, Measuring Water Footprint on a Lake Basin Scale: A Case Study of Lake Dianchi, China, CLEAN Soil, Air, Water, 44, 1296, 10.1002/clen.201400765

Sun, 2014, Water resource utilization efficiency and spatial spillover effects in China, J. Geogr. Sci., 24, 771, 10.1007/s11442-014-1119-x

Zhao, 2009, National water footprint in an input–output framework—A case study of China 2002, Ecol. Model., 220, 245, 10.1016/j.ecolmodel.2008.09.016

Smith, M. (1992). CROPWAT: A Computer Program for Irrigation Planning and Management, Food & Agriculture Organization of the United Nations.

Zhao, 2014, Driving force analysis of water footprint change based on extended STIRPAT model: Evidence from the Chinese agricultural sector, Ecol. Indic., 47, 43, 10.1016/j.ecolind.2014.04.048

Liu, 2014, International trade buffers the impact of future irrigation shortfalls, Global Environ. Chang., 29, 22, 10.1016/j.gloenvcha.2014.07.010

Gu, 2015, Ecological footprint analysis for urban agglomeration sustainability in the middle stream of the Yangtze River, Ecol. Model., 318, 86, 10.1016/j.ecolmodel.2015.07.022

Tian, 2013, Quantitative Research of China Agricultural Virtual Water Trade based on CROPWAT Model, Adv. Mater. Res., 726, 3463, 10.4028/www.scientific.net/AMR.726-731.3463

Ma, 2017, The spatiotemporal variation analysis of virtual water for agriculture and livestock husbandry: A study for Jilin Province in China, Sci. Total Environ., 586, 1150, 10.1016/j.scitotenv.2017.02.106

Gu, 2016, Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water–energy nexus perspective, Ecol. Indic., 60, 402, 10.1016/j.ecolind.2015.07.012

Qin, 2016, Field-based Experimental Water Footprint Study of Sunflower Growth in a Semiarid Region of China, J. Sci. Food Agric., 96, 3266, 10.1002/jsfa.7726

Cao, 2017, Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China, Sci. Total Environ., 610, 84

Giupponi, 2017, Integrated spatial assessment of the water, energy and food dimensions of the Sustainable Development Goals, Reg. Environ. Chang., 17, 1881, 10.1007/s10113-016-0998-z