A Beilinson-Bernstein Theorem for Analytic Quantum Groups. I

Pleiades Publishing Ltd - Tập 13 - Trang 44-82 - 2021
Nicolas Dupré1
1Universität Duisburg-Essen, Fakultät für Mathematik, Thea-Leymann-Straße 9, D-45127, Essen, Germany

Tóm tắt

In this two-part paper, we introduce a $$p$$ -adic analytic analogue of Backelin and Kremnizer’s construction of the quantum flag variety of a semisimple algebraic group, when $$q$$ is not a root of unity and $$\vert q-1\vert<1$$ . We then define a category of $$\lambda$$ -twisted $$D$$ -modules on this analytic quantum flag variety. We show that when $$\lambda$$ is regular and dominant and when the characteristic of the residue field does not divide the order of the Weyl group, the global section functor gives an equivalence of categories between the coherent $$\lambda$$ -twisted $$D$$ -modules and the category of finitely generated modules over $$\widehat{U_q^\lambda}$$ , where the latter is a completion of the ad-finite part of the quantum group with central character corresponding to $$\lambda$$ . Along the way, we also show that Banach comodules over the Banach completion $$ \widehat{ \mathcal{O}_q(B) } $$ of the quantum coordinate algebra of the Borel can be naturally identified with certain topologically integrable modules.

Tài liệu tham khảo

H. H. Andersen, P. Polo and K. X. Wen, “Representations of quantum algebras,” Invent. Math. 104 (1), 1–59 (1991). K. Ardakov, “Equivariant \(\mathcal D\)-modules on rigid analytic spaces,” Astérisque. To appear. K. Ardakov and S. Wadsley, “On irreducible representations of compact \(p\)-adic analytic groups,” Ann. Math. (2) 178 (2), 453–557 (2013). K. Ardakov and S. Wadsley, “\(\mathcal{D}\)-modules on rigid analytic spaces II: Kashiwara’s equivalence,” J. Algebr. Geom. 27 (4), 647–701 (2018). K. Ardakov and S. Wadsley, “\(\mathcal{D}\)-modules on rigid analytic spaces I,” J. für die reine und angewandte Math. 747, 221–275 (2019). M. Artin and J. J. Zhang, “Noncommutative projective schemes,” Adv. Math. 109 (2), 228–287 (1994). M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969). E. Backelin and K. Kremnizer, “Quantum flag varieties, equivariant quantum \(\mathcal D\)-modules, and localization of quantum groups,” Adv. Math. 203 (2), 408–429 (2006). A. Beilinson and J. Bernstein, “Localisation de \(\mathfrak{g}\)-modules,” C. R. Acad. Sci. Paris Sér. I Math. 292 (1), 15–18 (1981). O. Ben-Bassat and K. Kremnizer, “Non-Archimedean analytic geometry as relative algebraic geometry,” Ann. Fac. Sci. Toulouse Math. (6) 26 (1), 49–126 (2017). P. Berthelot, “\({\mathscr D}\)-modules arithmétiques. I. Opérateurs différentiels de niveau fini,” Ann. Sci. École Norm. Sup. (4) 29 (2), 185–272 (1996). R. Bezrukavnikov, I. Mirković and D. Rumynin, “Localization of modules for a semisimple Lie algebra in prime characteristic,” Ann. Math. (2) 167 (3), 945–991 (2008). A. Bode, “Completed tensor products and a global approach to \(p\)-adic analytic differential operators,” Math. Proc. Cambridge Philos. Soc. 167 (2), 389–416 (2019). S. Bosch, U. Güntzer and R. Remmert, Non-Archimedean Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 261 (Springer-Verlag, Berlin, 1984). K. A. Brown and K. R. Goodearl, Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics, CRM Barcelona (Birkhäuser Verlag, Basel, 2002). V. Chari and A. Pressley, A Guide to Quantum Groups (Cambridge Univ. Press, Cambridge, 1994). C. De Concini and C. Procesi, “Quantum groups,” in \(D\)-Modules, Representation Theory, and Quantum Groups (Venice, 1992), Lecture Notes in Math. 1565, 31–140 (Springer, Berlin, 1993). N. Dupré, “Rigid analytic quantum groups and quantum Arens-Michael envelopes,” J. Algebra 537, 98–146 (2019). N. Dupré, “A Beilinson-Bernstein Theorem for Analytic Quantum Groups. II,” \(p\)-Adic Numbers Ultrametric Anal. Appl. To appear. C. T. Féaux de Lacroix, “Einige Resultate über die topologischen Darstellungen \(p\)-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem \(p\)-adischen Körper,” in Schriftenreihe des Mathematischen Instituts der Universität Münster. 3. Serie, Heft 23, Schriftenreihe Math. Inst. Univ. Münster 3. Ser. 23, pages x+111 (Univ. Münster, Math. Inst., Münster, 1999). P. Gabriel, “Des catégories abéliennes,” Bull. Soc. Math. France 90, 323–448 (1962). A. Grothendieck, “Éléments de géométrie algébrique. I. Le langage des schémas,” Inst. Hautes Études Sci. Publ. Math. (4), 228 (1960). A. Grothendieck, “Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I,” Inst. Hautes Études Sci. Publ. Math. (4), 228 (1960). R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52 (Springer-Verlag, New York-Heidelberg, 1977). C. Huyghe, D. Patel, T. Schmidt and M. Strauch, “\(\mathcal{D}^\dagger\)-affinity of formal models of flag varieties,” Math. Res. Lett. To appear. J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics 6 (American Math. Society, Providence, RI, 1996). J. C. Jantzen, Representations of Algebraic Groups, Mathematical Surveys and Monographs 107 (American Math. Society, Providence, RI, 2003). A. Joseph, “Faithfully flat embeddings for minimal primitive quotients of quantized enveloping algebras,” in Quantum Deformations of Algebras and Their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conf. Proc. A. Joseph, Quantum Groups and Their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 29 (Springer-Verlag, Berlin Heidelberg, 1995). A. Joseph, G. S. Perets and P. Polo, “Sur l’équivalence de catégories de Beĭlinson et Bernstein,” C. R. Acad. Sci. Paris Sér. I Math. 313 (11), 705–709 (1991). K. Kremnizer and C. Smith, “A Tannakian reconstruction theorem for IndBanach spaces,” 2017. Arxiv: 1703.05679. S. Kumar, N. Lauritzen and J. F. Thomsen, “Frobenius splitting of cotangent bundles of flag varieties,” Invent. Math. 136 (3), 603–621 (1999). V. A. Lunts and A. L. Rosenberg, “Localization for quantum groups,” Selecta Math. (N.S.) 5 (1), 123–159 (1999). G. Lusztig, “Quantum groups at roots of \(1\),” Geom. Dedicata 35 (1-3), 89–113 (1990). A. Lyubinin, “\(p\)-adic quantum hyperenveloping algebra for \(\mathfrak{sl}_{2}\),” Arxiv: 1312.4372. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics 30 (American Math. Society, Providence, RI, 2001). D. Miličić, Localization and Representation Theory of Reductive Lie Groups, https://www.math.utah.edu/~milicic/Eprints/book.pdf. D. Patel, T. Schmidt and M. Strauch, “Locally analytic representations and sheaves on the Bruhat-Tits building,” Alg. Number Theory 8 (6), 1365–1445 (2014). D. Patel, T. Schmidt and M. Strauch, “Locally analytic representations of GL(\(2,l\)) via semistable models of \(\mathbb{P}^1\),” J. Inst. Math. Jussieu, 18 (1), 125–187 (2019). A. L. Rosenberg, “Noncommutative schemes,” Compos. Math. 112 (1), 93–125 (1998). T. Schmidt, “On locally analytic Beilinson-Bernstein localization and the canonical dimension,” Math. Z. 275 (3-4), 793–833 (2013). P. Schneider, Nonarchimedean Functional Analysis, Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2002). P. Schneider and J. Teitelbaum, “Locally analytic distributions and \(p\)-adic representation theory, with applications to \({\rm GL}_2\),” J. Amer. Math. Soc. 15 (2), 443–468 (2002). P. Schneider and J. Teitelbaum, “Algebras of \(p\)-adic distributions and admissible representations,” Invent. Math. 153 (1), 145–196 (2003). P. Schneider, J. Teitelbaum and D. Prasad, “\(U({\mathfrak{g}})\)-finite locally analytic representations,” Represent. Theory 5, 111–128 (2001). J.-P. Schneiders, “Quasi-abelian categories and sheaves,” Mém. Soc. Math. Fr. (N.S.) (76), vi+134 (1999). C. Smith, “On analytic analogues of quantum groups,” 2018. Arxiv: 1806.10502. Y. Soibelman, “Quantum \(p\)-adic spaces and quantum \(p\)-adic groups,” in Geometry and Dynamics of Groups and Spaces, Progr. Math. 265, 697–719 (Birkhäuser, Basel, 2008). T. Tanisaki, “The Beilinson-Bernstein correspondence for quantized enveloping algebras,” Math. Z. 250 (2), 299–361 (2005). T. Tanisaki, “Differential operators on quantized flag manifolds at roots of unity, II,” Nagoya Math. J. 214, 1–52 (2014). C. Wald, A \(p\)-Adic Quantum Group and the Quantized \(p\)-Adic Upper Half Plane, PhD thesis, Humboldt Universität zu Berlin, 2017.