A Bayesian spatial model with auxiliary covariates to assess and adjust nonignorable nonresponse

Spatial Statistics - Tập 8 - Trang 122-144 - 2014
Xiaoming Gao1, Chong He2, Dongchu Sun3
1Missouri Department of Conservation, Central Regional Office and Conservation Research Center, 3500 E. Gans Road, Columbia, MO 65201, USA
2Department of Statistics, University of Missouri, Columbia, MO 65211 USA
3Department of Statistics, University of Missouri, Columbia, MO 65211, USA

Tài liệu tham khảo

Albert, 1993, Bayesian analysis of binary and polychotomous response data, J. Amer. Statist. Assoc., 88, 669, 10.1080/01621459.1993.10476321 Besag, 1974, Spatial interaction and the statistical analysis of lattice systems (with discussion), J. R. Stat. Soc. Ser. B Methodol., 36, 192 Bethlehem, 2002, Weighting nonresponse adjustments based on auxiliary information, 275 Fay, 1996, Alternative paradigms for the analysis of imputed survey data (Pkg: P473-520), J. Amer. Statist. Assoc., 91, 490, 10.1080/01621459.1996.10476909 Filion, 1980, 441 Gao, X., 2010. Bayesian Spatial Models for Adjusting Nonresponse in Small Area Estimation, Ph.D. Thesis, University of Missouri-Columbia. Gao, 2007, Hierarchical bayes estimation of response rates for a deer hunter attitude survey with spatial correlation, Far East J. Math. Sci., 26, 715 Gao, 2007, Estimate response rates and satisfaction rates given response jointly via hierarchical Bayesian modeling approach, 1273 Gilks, 1996 Gilks, 1992, Adaptive rejection sampling for Gibbs sampling, Appl. Stat., 41, 337, 10.2307/2347565 Hansen, 1946, The problem of nonresponse in sample surveys, J. Amer. Statist. Assoc., 41, 663 He, 2000, Hierarchical Bayes estimation of hunting success rates with spatial correlations, Biometrics, 56, 360, 10.1111/j.0006-341X.2000.00360.x Kim, 2001, A bivariate Bayes method for improving the estimates of mortality rates with a twofold conditional autoregressive model, J. Amer. Statist. Assoc., 96, 1506, 10.1198/016214501753382408 Liang, 2008, Mixtures of g priors for Bayesian variable selection, J. Amer. Statist. Assoc., 103, 410, 10.1198/016214507000001337 Little, 2002 Lohr, 2010 Meng, 1996, Simulating ratios of normalizing constants via a ssimple identity: a theoretical exploration, Statist. Sinica, 6, 831 Nandram, 2002, Hierarchical Bayesian nonresponse models for binary data from small areas with uncertainty about ignorability, J. Amer. Statist. Assoc., 97, 381, 10.1198/016214502760046934 Nandram, 2005, Hierarchical Bayesian nonignorable nonresponse regression models for small areas: an application to the NHANES data, Surv. Methodol., 31, 73 Nandram, 2005, Bayesian non-response models for categorical data from small areas: an application to BMD and age, Stat. Med., 24, 1047, 10.1002/sim.1985 Oleson, 2004, Hierarchical Bayesian modeling in dichotomous processes in the presence of nonresponse, Biometrics, 60, 50, 10.1111/j.0006-341X.2004.00153.x Oleson, 2008, Adjusting nonresponse bias at subdomain levels using multiple response phases, Biom. J., 50, 58, 10.1002/bimj.200710360 Peress, 2010, Correcting for survey nonresponse using variable response propensity, J. Amer. Statist. Assoc., 105, 1418, 10.1198/jasa.2010.ap09485 Rao, 1996, On variance estimation with imputed survey data (Pkg: P473-520), J. Amer. Statist. Assoc., 91, 499, 10.1080/01621459.1996.10476910 Rao, 2003 Ren, 2005, Hierarchical models for the probabilities of conception, Biom. J., 47, 721, 10.1002/bimj.200410069 Robert, 2004 Shao, 2003, Impact of the bootstrap on sample surveys, Statist. Sci., 18, 191, 10.1214/ss/1063994974 Stasny, 1991, Hierarchical models for the probabilities of a survey classification and nonresponse: an example from the national crime survey, J. Amer. Statist. Assoc., 86, 296, 10.1080/01621459.1991.10475033 Wakefield, 1991, Efficient generation of random variates via the ratio-of-uniforms method, Stat. Comput., 1, 129, 10.1007/BF01889987 Woodard, R., 1999. Bayesian Hierarchical Models for Hunting Success Rates, Ph.D. Thesis, University of Missouri-Columbia. Zellner, 1980, Posterior odds ratios for selected regression hypotheses, 585