A Bayesian network approach for multi-sectoral flood damage assessment and multi-scenario analysis

Climate Risk Management - Tập 35 - Trang 100410 - 2022
Remi Harris1,2, Elisa Furlan1,2, Hung Vuong Pham1,2, Silvia Torresan1,2, Jaroslav Mysiak1,2, Andrea Critto1,2
1Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari Venice, I-30170 Venice, Italy
2Fondazione Centro-Euro-Mediterraneo sui Cambiamenti Climatici, I-73100 Lecce, Italy

Tài liệu tham khảo

Amadio, 2016, Improving flood damage assessment models in Italy, Nat. Hazards, 82, 2075, 10.1007/s11069-016-2286-0 Amadio, 2019, Testing empirical and synthetic flood damage models: the case of Italy, Hazards Earth Syst. Sci, 19, 661, 10.5194/nhess-19-661-2019 Aurambout, 2016 Balbi, 2016, A spatial Bayesian network model to assess the benefits of early warning for urban flood risk to people, Hazards Earth Syst. Sci., 16, 1323, 10.5194/nhess-16-1323-2016 Burek, 2013 Carisi, 2018, Development and assessment of uni-and multivariable flood loss models for Emilia-Romagna (Italy), Hazards Earth Syst. Sci., 18, 2057, 10.5194/nhess-18-2057-2018 Carminati, 2002, Subsidence rates in the Po Plain, northern Italy: the relative impact of natural and anthropogenic causation, Eng. Geol., 66, 241, 10.1016/S0013-7952(02)00031-5 Coppola, 2014, Changing hydrological conditions in the Po basin under global warming, Sci. Total Environ., 493, 1183, 10.1016/j.scitotenv.2014.03.003 Das, 2020, Linking IPCC AR4 & AR5 frameworks for assessing vulnerability and risk to climate change in the Indian Bengal Delta, Prog. Disaster Sci., 7, 10.1016/j.pdisas.2020.100110 De Santa Olalla, 2005, Integrated water resources management of the Hydrogeological Unit “Eastern Mancha” using Bayesian Belief Networks, Agric. Water Manag., 77, 21, 10.1016/j.agwat.2004.09.029 Defra. (2011). Guidelines for Environmental Risk Assessment and Management - Green Leaves III. www.defra.gov.uk. Deparday, V., Gevaert, C.M., Molinario, G.M., Soden, R.J., & Balog-Way, S.A.B. (2019). Machine Learning for Disaster Risk Management. Dottori, 2016 Furlan, 2020, Multi-scenario analysis in the Adriatic Sea: a GIS-based Bayesian network to support maritime spatial planning, Sci. Total Environ., 703, 134972, 10.1016/j.scitotenv.2019.134972 Govi, 2005, Inundation on the Po Plain caused by levee breaches, Giornale Di Geologia Applicata, 1, 167 Hasanzadeh Nafari, 2017, Flood loss modelling with FLF-IT: a new flood loss function for Italian residential structures, Nat. Hazards Earth Syst. Sci., 17, 1047, 10.5194/nhess-17-1047-2017 IPCC. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. ISPRA. (2014). Mappe di pericolosita idraulica e popolazione es- ‘ posta a rischio alluvioni in Italia. ISPRA. (2018). Hydrogeological instability in Italy: hazard and risk indicators. ISTAT. (2011). 15◦ censimento della populazione e delle abitazioni, Istituto nazionale di statistica. Jongman, 2012, Comparative flood damage model assessment: towards a European approach, Nat. Hazards Earth Syst. Sci., 12, 3733, 10.5194/nhess-12-3733-2012 Joyce, J. (2021). Bayes’ Theorem. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2021 Edition). https://plato.stanford.edu/archives/fall2021/entries/bayes-theorem/%3E). Kragt, 2009, A beginners guide to Bayesian network modelling for integrated catchment management, Landscape Logic Kreibich, H., Seifert, K., Kunert, I., Schwarz, U., Merz, J., Thieken, B., Piroth, K., Seifert, I., Maiwald, H., Kunert, U., Schwarz, J., Merz, B., & Thieken, A.H. (2009). Is flow velocity a significant parameter in flood damage modelling. In Nat. Hazards Earth Syst. Sci (Vol. 9, Issue 5). www.nat-hazards-earth-syst-sci.net/9/1679/2009/. Landuyt, 2013, A review of Bayesian belief networks in ecosystem service modelling, Environ. Model. Softw., 46, 1, 10.1016/j.envsoft.2013.03.011 Lavalle, 2014 Li, 2016, A review on machine learning principles for multi-view biological data integration, Briefings Bioinf., 19, bbw113, 10.1093/bib/bbw113 Lombardi, 2018, Increasing of severe hydrological events in the Po basin under global warming, Geophys. Res. Abstracts, 20 McNaught, K.R., & Zagorecki, A. (2009). Using dynamic Bayesian networks for prognostic modelling to inform maintenance decision making. IEEM 2009 - IEEE International Conference on Industrial Engineering and Engineering Management, 1155–1159. https://doi.org/10.1109/IEEM.2009.5372973. Merz, 2010, Natural Hazards and earth system sciences “assessment of economic flood damage”, Hazards Earth Syst. Sci., 10, 1697, 10.5194/nhess-10-1697-2010 Montanari, 2012, Hydrology of the Po River: Looking for changing patterns in river discharge, Hydrol. Earth Syst. Sci., 16, 3739, 10.5194/hess-16-3739-2012 Notaro, 2014, Identification of the best flood retrofitting scenario in an urban watershed by means of a Bayesian Decision Network, WIT Trans. Built Environ., 139, 341, 10.2495/UW140291 Orlandini, 2015, Evidence of an emerging levee failure mechanism causing disastrous floods in Italy, Water Resour. Res., 51, 7995, 10.1002/2015WR017426 Paprotny, 2020, Estimating exposure of residential assets to natural hazards in Europe using open data, Nat. Hazards Earth Syst. Sci., 20, 323, 10.5194/nhess-20-323-2020 Paprotny, Dominik, Kreibich, H., Morales-Nápoles, O., Wagenaar, D., Castellarin, A., Carisi, F., Bertin, X., Terefenko, P., Merz, B., & Schröter, K. (2020). Flood exposure and vulnerability estimation methods for residential and commercial assets in Europe. https://doi.org/10.5194/egusphere-egu2020-4753. Peña, 2005, Learning dynamic Bayesian network models via cross-validation, Pattern Recognit. Lett., 26, 2295, 10.1016/j.patrec.2005.04.005 Poelhekke, 2016, Predicting coastal hazards for sandy coasts with a Bayesian Network, Coast. Eng., 118, 21, 10.1016/j.coastaleng.2016.08.011 Pollino, 2007, Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment, Environ. Modell. Software, 22, 1140, 10.1016/j.envsoft.2006.03.006 Rodriguez, 2010, Sensitivity analysis of k-Fold cross validation in prediction error estimation, IEEE Trans. Pattern Anal. Mach. Intell., 32, 569, 10.1109/TPAMI.2009.187 Sairam, 2020, Bayesian Data-Driven approach enhances synthetic flood loss models, Environ. Model. Softw., 132, 10.1016/j.envsoft.2020.104798 Sairam, 2019, Hierarchical Bayesian approach for modeling spatiotemporal variability in flood damage processes, Water Resour. Res., 55, 8223, 10.1029/2019WR025068 Sayers, P.B., Hall, J.W., & Meadowcroft, I.C. (2002). Towards risk-based flood hazard management in the UK. Proc. Inst. Civ. Eng.: Civ. Eng. 150(1 SPECIAL ISSUE), 36–42. https://doi.org/10.1680/cien.2002.150.5.36. Schröter, 2014, How useful are complex flood damage models?, Water Resour. Res., 50, 3378, 10.1002/2013WR014396 Scutari, 2010, Learning Bayesian networks with the bnlearn R package, J. Stat. Softw., 35, 1, 10.18637/jss.v035.i03 Sharma, 2019, Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change, Environ. Res. Commun., 1, 051004, 10.1088/2515-7620/ab24ed Sperotto, A., Molina, J.L., Torresan, S., Critto, A., & Marcomini, A. (2017). Reviewing Bayesian Networks potentials for climate change impacts assessment and management: a multi-risk perspective. J. Environ. Manage. 202, 320–331). Academic Press. https://doi.org/10.1016/j.jenvman.2017.07.044. Sperotto, 2019, A Bayesian Networks approach for the assessment of climate change impacts on nutrients loading, Environ. Sci. Policy, 100, 21, 10.1016/j.envsci.2019.06.004 Tangney, 2019, Understanding climate change as risk: a review of IPCC guidance for decision-making, J. Risk Res., 23, 1424, 10.1080/13669877.2019.1673801 Tarquini, 2007, TINITALY, a digital elevation model of Italy with a 10 m-cell size (Version 1.0) Thieken, A.H., Ackermann, V., Elmer, F., Kreibich, H., Kuhlmann, B., Kunert, U., Maiwald, H., Merz, B., Müller, M., Piroth, K., Schwarz, J., Schwarze, R., Seifert, I., & Seifert, J. (2009). 4 th International Symposium on Flood Defence: Managing Flood Risk, Reliability and Vulnerability METHODS FOR THE EVALUATION OF DIRECT AND INDIRECT FLOOD LOSSES. Deutsches GeoForschungsZentrum GFZ. Tockner, K., Uehlinger, U., & Robinson, C. (2009). Rivers of Europe. Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-369449-2.X0001-X. UNFCCC. (2020). Online Guide to Loss and Damage. https://unfccc.int/sites/default/files/resource/Online_Guide_feb_2020.pdf. Vacondio, 2014, GPU-enhanced finite volume shallow water solver for fast flood simulations, Environ. Modell. Software, 57, 60, 10.1016/j.envsoft.2014.02.003 Vacondio, 2016, Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme, Nat. Hazards, 80, 103, 10.1007/s11069-015-1959-4 Wagenaar, 2019, Invited perspectives: how machine learning will change flood risk and impact assessment, Nat. Hazards Earth Syst. Sci. Discuss., 1–23 Wagenaar, 2017, Multi-variable flood damage modelling with limited data using supervised learning approaches, Hazards Earth Syst. Sci., 17, 1683, 10.5194/nhess-17-1683-2017 Wagenaar, 2018, Regional and temporal transferability of multivariable flood damage models, Water Resour. Res., 54, 3688, 10.1029/2017WR022233 Ward, 2011, How are flood risk estimates affected by the choice of return-periods?, Nat. Hazards Earth Syst. Sci., 11, 3181, 10.5194/nhess-11-3181-2011 Wing, 2020, New insights into US flood vulnerability revealed from flood insurance big data, Nat. Commun., 11, 1, 10.1038/s41467-020-15264-2 Yadav, S., & Shukla, S. (2016). Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. Proceedings - 6th International Advanced Computing Conference, IACC 2016, 78–83. https://doi.org/10.1109/IACC.2016.25. Zanchettin, 2008, Po River discharges: A preliminary analysis of a 200-year time series, Clim. Change, 89, 411, 10.1007/s10584-008-9395-z