A Bayesian Statistical Method for the Detection and Quantification of Rotational Diffusion Anisotropy from NMR Relaxation Data
Tài liệu tham khảo
Palmer, 1997, Probing molecular motions by NMR, Curr. Opinion Struct. Biol., 7, 732, 10.1016/S0959-440X(97)80085-1
Fischer, 1998, Protein NMR relaxation: Theory, applications and outlook, Prog. NMR Spectrosc., 33, 207, 10.1016/S0079-6565(98)00023-5
Schurr, 1994, A test of the model-free formulas. Effects of anisotropic rotational diffusion and dimerization, J. Magn. Reson. B, 105, 211, 10.1006/jmrb.1994.1127
Andrec, 1999, Estimation of dynamic parameters from NMR relaxation data using the Lipari–Szabo model-free approach and Bayesian statistical methods, J. Magn. Reson., 139, 408, 10.1006/jmre.1999.1839
Luginbühl, 1997, Anisotropic molecular rotational diffusion in 15N spin relaxation studies of protein mobility, Biochemistry, 36, 7305, 10.1021/bi963161h
de Alba, 1999, The use of residual dipolar coupling in concert with backbone relaxation rates to identify conformational exchange by NMR, J. Am. Chem. Soc., 121, 4282, 10.1021/ja990062t
Barbato, 1992, Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: The central helix is flexible, Biochemistry, 31, 5269, 10.1021/bi00138a005
Tjandra, 1996, Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields, J. Biomol. NMR, 8, 273, 10.1007/BF00410326
Szyperski, 1993, Protein dynamics studied by rotating frame 15N spin relaxation times, J. Biomol. NMR, 3, 151, 10.1007/BF00178259
Akke, 1998, Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain, Nature Struct. Biol., 5, 55, 10.1038/nsb0198-55
Meekhof, 1999, Separating the contributions to 15N transverse relaxation in a fibronectin type III domain, J. Biomol. NMR, 14, 13, 10.1023/A:1008371332130
Kroenke, 1998, Longitudinal and transverse 1H–15N dipolar/15N chemical shift anisotropy relaxation interference: Unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules, J. Am. Chem. Soc., 120, 7905, 10.1021/ja980832l
Tjandra, 1995, Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements, Eur. J. Biochem., 230, 1014, 10.1111/j.1432-1033.1995.tb20650.x
Phan, 1996, Dynamic studies of a fibronectin type I module pair at three frequencies: Anisotropic modelling and direct determination of conformational exchange, J. Biomol. NMR, 8, 369, 10.1007/BF00228140
Lipari, 1982, Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity, J. Am. Chem. Soc., 104, 4546, 10.1021/ja00381a009
Brüschweiler, 1995, Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling, Science, 268, 886, 10.1126/science.7754375
Lee, 1997, Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13Cα nuclear spin relaxation, J. Biomol. NMR, 9, 287, 10.1023/A:1018631009583
Sivia, 1996
Woessner, 1962, Nuclear spin relaxation in ellipsoids undergoing rotational Brownian motion, J. Chem. Phys., 37, 647, 10.1063/1.1701390
Abragam, 1961
Fushman, 1998, Direct measurement of 15N chemical shift anisotropy in solution, J. Am. Chem. Soc., 120, 10947, 10.1021/ja981686m
Boyd, 1998, Defining the orientation of the 15N shielding tensor using 15N relaxation data for a protein in solution, J. Am. Chem. Soc., 120, 9692, 10.1021/ja9815733
Scheurer, 1999, Effects of dynamics and environment on 15N chemical shielding anisotropy in proteins: A combination of density functional theory, molecular dynamics simulation, and NMR relaxation, J. Am. Chem. Soc., 121, 4242, 10.1021/ja984159b
Blackledge, 1998, Precision and uncertainty in the characterization of anisotropic rotational diffusion by 15N relaxation, J. Am. Chem. Soc., 120, 4538, 10.1021/ja9742646
M. J. Schervish, Theory of Statistics, Springer-Verlag, New York, 1995.
Kass, 1995, Bayes factors, J. Am. Stat. Assoc., 90, 773, 10.1080/01621459.1995.10476572
Verdinelli, 1995, Computing Bayes factors using a generalization of the Savage–Dickey density ratio, J. Am. Stat. Assoc., 90, 614, 10.1080/01621459.1995.10476554
Bevington, 1969
Wolfram, 1996
Schäfer, 1996, The S100 family of EF-hand calcium-binding proteins: Functions and pathology, TIBS, 21, 134
Drohat, 1996, Solution structure of rat Apo-S100B(ββ) as determined by NMR spectroscopy, Biochemistry, 35, 11577, 10.1021/bi9612226
Drohat, 1999, The use of dipolar couplings for determining the solution structure of rat apo-S100B(ββ), Protein Sci., 8, 800, 10.1110/ps.8.4.800
Mandel, 1995, Backbone dynamics of Escherichia coli ribonuclease HI: Correlations with structure and function in an active enzyme, J. Mol. Biol., 246, 144, 10.1006/jmbi.1994.0073
Pervushin, 1997, Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution, Proc. Natl. Acad. Sci. USA, 94, 12366, 10.1073/pnas.94.23.12366
Fushman, 1999, The effect of noncollinearity of 15N–1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY, J. Biomol. NMR, 13, 139, 10.1023/A:1008349331773
Papoulis, 1965
Gilks, 1996
Metropolis, 1953, Equation of state calculations by fast computing machine, J. Chem. Phys., 21, 1087, 10.1063/1.1699114
Jin, 1997, Impact of the precision in NMR relaxation measurements on the interpretation of protein dynamics, J. Am. Chem. Soc., 119, 6923, 10.1021/ja970947+
Jin, 1998, Propagation of experimental uncertainties using the Lipari–Szabo model-free analysis of protein dynamics, J. Biomol. NMR, 12, 471, 10.1023/A:1008313319334
R. M. Neal, Markov Chain Monte Carlo Methods Based on ‘Slicing’ the Density Function, Technical Report 9722, Department of Statistics, University of Toronto, 1997.
Izenman, 1991, Recent developments in nonparametric density estimation, J. Am. Stat. Assoc., 86, 205
Terrell, 1990, The maximal smoothing principle in density estimation, J. Am. Stat. Assoc., 85, 470, 10.1080/01621459.1990.10476223
Press, 1992