A Bayesian Approach for Learning Gene Networks Underlying Disease Severity in COPD
Tóm tắt
Từ khóa
Tài liệu tham khảo
Armagan A, Dunson D, Lee J (2013) Generalized double pareto shrinkage. Stat Sin 23(1):119
Atay-Kayis A, Massam H (2005) The marginal likelihood for decomposable and non-decomposable graphical gaussian models. Biometrika 92:317–355
Bahr T et al (2013) Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 49(2):316–23
Bowler R et al (2014) Plasma sphingolipids associated with copd phenotypes. Am J Respir Crit Care Med 191(3):275–284
Chatr-Aryamontri A, Breitkreutz B, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Kolas N, O’Donnell L, Reguly T, Nixon J, Ramage L, Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS, Dolinski K, Tyers M (2015) The biogrid interaction database: 2015 update. Nucleic Acids Res 43(Database issue):470–478
Chen Z, Kim H, Sciurba F, Lee S, Feghali-Bostwick C, Stolz D, Dhir R, Landreneau R, Schuchert M, Yousem S, Nakahira K, Pilewski J, Lee J, Zhang Y, Ryter S, Choi A (2008) Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS ONE 3(10):3316
Danaher P (2012) Jgl: performs the joint graphical lasso for sparse inverse covariance estimation on multiple classes. http://CRAN.R-project.org/package=JGL
Danaher P, Wang P, Witten D (2014) The joint graphical lasso for inverse covariance estimation across multiple classes. J R Stat Soc B 76(2):373–397
Dobra A, Jones B, Hans C, Nevins J, West M (2004) Sparse graphical models for exploring gene expression data. J Multivar Anal 90:196–212
Dobra A, Lenkoski A, Rodriguez A (2012) Bayesian inference for general gaussian graphical models with application to multivariate lattice data. J Am Stat Assoc 106:1418–1433
GEO (2015) Gene expression omnibus. http://www.ncbi.nlm.nih.gov/geo
Gottardo R, Raftery A (2008) Markov chain Monte Carlo with mixtures of mutually singular distributions. J Comput Graph Stat 17(4):949–975
Griffin J, Brown P (2010) Inference with normal-gamma prior distributions in regression problems. Bayesian Anal 5(1):171–188
Guo J, Levina E, Michailidis G, Zhu J (2011) Joint estimation of multiple graphical models. Biometrika 98(1):1–15
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of affymetrix genechip probe level data nucleic acids research. Nucleic Acids Res 31(4):e15
Jones B, Carvalho C, Dobra A, Hans C, Carter C, West M (2005) Experiments in stochastic computation for high dimensional graphical models. Stat Sci 20(4):388–400
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in kegg. Nucleic Acids Res 42:199–205
Khondker Z, Zhu H, Chu H, Lin W, Ibrahim J (2013) The Bayesian Covariance Lasso. Stat Its Interface 6(2):243
Langfelder P, Mischel SHP (2013) When is hub gene selection better than standard meta-analysis? PLoS ONE 8(4):e61505
Li F, Zhang N (2010) Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. J Am Stat Assoc 105(491):1202–1214
Marwick J, Caramori G, Casolari P, Mazzoni F, Kirkham P, Adcock I, Chung K, Papi A (2010) A role for phosphoinositol 3-kinase delta in the impairment of glucocorticoid responsiveness in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 125(5):1146–53
Mukherjee S, Speed T (2008) Network inference using informative priors. Proc Natl Acad Sci 105(38):14,313–14,318
Ni Y, Marchetti G, Baladandayuthapani V, Stingo F (2015) Bayesian approaches for large biological networks. In: Mitra R, Muller P (eds) Nonparametric Bayesian methods in biostatistics and bioinformatics. Springer, New York
Park T, Casella G (2008) The Bayesian lasso. J Am Stat Assoc 20(1):140–157
Parshall M (1999) Adult emergency visits for chronic cardiorespiratory disease: does dyspnea matter? Nurs Res 48(2):62–70
Peterson C, Stingo F, Vannucci M (2015) Bayesian inference of multiple Gaussian graphical models. J Am Stat Assoc 110(509):159–174
Peterson C, Stingo F, Vannucci M (2016) Joint bayesian variable and graph selection for regression models with network-structured predictors. Stat Med 35(7):1017–1031
Reimand J, Wagih O, Bader G (2013) The mutational landscape of phosphorylation signaling in cancer. Sci Rep. doi: 10.1038/srep02651
Roverato A (2002) Hyper-inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scand J Stat 29:391–411
Scott J, Berger J (2010) Bayes and empirical Bayes multiplicity adjustment in the variable-selection problem. Ann Stat 38(5):2587–2619
Scott J, Carvalho C (2008) Feature-inclusion stochastic search for Gaussian graphical models. J Comput Graphical Stat 17:790–808
Singh D et al (2014) Altered gene expression in blood and sputum in copd frequent exacerbators in the eclipse cohort. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107381
Skrepnek G, Skrepnek S (2004) Epidemiology, clinical and economic burden, and natural history of chronic obstructive pulmonary disease and asthma. AM J Manag Care 10(5):S129–38
Stelzer G, Dalah I, Stein T, Satanower Y, Rosen N, Nativ N, Oz-Levi D, Olender T, Belinky F, Bahir I, Krug H, Perco P, Mayer B, Kolker E, Safran M, Lancet D (2011) In-silico human genomics with genecards. Hum Genomics 5(6):709–717
Stingo F, Marchetti G (2015) Efficient local updates for undirected graphical models. Stat Comput 25:159–171
Stingo F, Vannucci M (2011) Variable selection for discriminant analysis with markov random field priors for the analysis of microarray data. Bioinformatics 27(4):495–501
Stingo F, Chen Y, Vannucci M, Barrier M, Mirkes P (2010) A Bayesian graphical modeling approach to microRNA regulatory network inference. Ann Appl Stat 4(4):2024
Telesca D, Mueller P, Kornblau S, Suchard M, Ji Y (2012) Modeling protein expression and protein signaling pathways. J Am Stat Assoc 107(500):1372–1384
Wang H (2012) The Bayesian graphical lasso and efficient posterior computation. Bayesian Anal 7(2):771–790
Wang H (2015) Scaling it up: stochastic search structure learning in graphical models. Bayesian Anal 10(2):351–377
Wang H, Li Z (2012) Efficient gaussian graphical model determination under g-wishart prior distributions. Electron J Stat 6:168–198