A 50-m laser strainmeter system installed in Transbaikalia: testing results

Russian Geology and Geophysics - Tập 57 - Trang 1768-1774 - 2016
G.I. Dolgikh1,2, S.G. Dolgikh1,2, I.Yu. Rasskazov3, V.A. Lugovoy3, B.G. Saksin3
1V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, ul. Baltiiskaya 43, Vladivostok, 690041, Russia
2School of Natural Sciences, Far Eastern Federal University, ul. Sukhanova 8, Vladivostok, 690950, Russia
3Mining Institute, Far Eastern Branch of the Russian Academy of Sciences, ul. Turgeneva 51, Khabarovsk, 680000, Russia

Tóm tắt

Abstract We report testing results for a 50-m laser strainmeter installed 300 m under the ground in a mine of PJSC Priargunsky Industrial Mining and Chemical Union (Krasnokamensk) and demonstrate its ability to record microseisms and waves of infrasonic–sonic bandwidths. Processing and interpretation of the collected data provides information about microseismic to tidal strain changes in the Transbaikalian region.

Tài liệu tham khảo

Alekseev, 2003, Registration of infragravity waves at the hydrosphere–lithosphere boundary using coastal laser strainmeter, Dokl. Earth Sci., 389, 291 Bagaev, 1992, Laser strainmeters for high-resolution geophysical measurements, Izv. RAN, Fizika Zemli, 1, 85 Davydov, 1993, Seismoacoustic processes as studied by laser strainmeters, Optika Atmosfery i Okeana, 6, 844 Davydov, 1995, Recording of ultralow-frequency oscillations by a 52.5-m laser strainmeter. Izv. Phys, Solid Earth, 31, 248 Davydov, 1997, Modulation of the free oscillations of the Earth, Izv. Phys. Solid Earth, 33, 644 Davydov, 1994, Dynamics and transformation of internal waves in the shelf zone, Dokl. Akad. Nauk, 336, 538 Dolgikh, 1998, Parameters of seismoacoustic signals from a low-frequency hydroacoustic source: Some experimental results, Akusticheskii Zh., 44, 358 Dolgikh, 2011, Principles of designing single-coordinate laser strainmeters, Techn. Phys. Lett., 37, 204, 10.1134/S1063785011030035 Dolgikh, 2011, On a possibility of prognosis of crustal earthquakes by variations of the stress-strain field of the earth, Dokl. Earth Sci., 437, 518, 10.1134/S1028334X11040118 Dolgikh, 2009, Lasers, Laser Systems [in Russian] Dolgikh, 1998, A two-coordinate laser strainmeter, Izv. Phys. Solid Earth, 34, 946 Dolgikh, 2001, Barometric effects on laser strainmeter readings, Izv. RAN, 92 Dolgikh, 2002, Application of horizontally and vertically oriented strainmeters in geophysical studies of transitional zones, Izv. Phys. Solid Earth, 38, 686 Dolgikh, 2007, Deformation and acoustic precursors of earthquakes, Dokl. Earth Sci., 413, 281, 10.1134/S1028334X07020341 Dolgikh, 2007, Deformation method for estimation of tsunamigenic earthquake risks, Dokl. Earth Sci., 417, 1261, 10.1134/S1028334X07080296 Dolgikh, 2011, Infrasound oscillations in the Sea of Japan, Dokl. Earth Sci., 441, 1529, 10.1134/S1028334X11110031 Dolgikh, 2015, Internal marine waves and atmospheric depressions, Dokl. Earth Sci., 462, 631633, 10.1134/S1028334X15060112 Drenov, 2013, Acceleration response spectra of waves for the earthquakes of the southwestern flank of the Baikal Rift Zone, Russian Geology and Geophysics (Geologiya i Geofizika), 54, 223, 10.1016/j.rgg.2013.01.008 Garoi, 2007, CALAS: Carpathian laser strainmeter–a project and preliminary results, Proc. SPIE, 7022, 7022181-1 Granin, 2014, Generation of Lake Baikal level fluctuations by remote earthquakes, Dokl. Earth Sci., 455, 224 Ishchukova, 2007, Uranium Deposits in the Streltsovo Ore Cluster in Transbaiklalia [in Russian] Jahr, 2006, Strainmeters at Moxa observatory, Germany. J. Geodyn., 41, 205, 10.1016/j.jog.2005.08.017 2009, Laser Interferometer Gravitational Wave Observatory (LIGO), Official site of the LIGO Laboratory Milyukov, 2005, Observations of the subtle structure of the Earth’s main spheroidal mode 0S2, Izv. RAN, Fizika Zemli, 16 Milyukov, 2006, Monitoring of magmatic structures at Elbrus volcano: evidence from lithospheric strain variations, Vulkanologiya i Seismologiya, 1, 3 Milyukov, 2005, A laser interferometer-deformograph for monitoring the crust movement, Instrum. Exp. Tech., 48, 780, 10.1007/s10786-005-0140-9 Milyukov, 2011, Deformation processes in the lithosphere related to the nonuniformity of the Earth’s rotation, Izv. Phys. Solid Earth, 47, 246, 10.1134/S1069351311020042 Milyukov, 2015, The free oscillations of the earth excited by three strongest earthquakes of the past decade according to deformation observations, Izv. Phys. Solid Earth, 51, 176, 10.1134/S1069351315010097 Petrova, 1999, Seismic process at the 0.05–0.5 mHz bandwidth: patterns and features, Vulkanologiya i Seismologiya, 4–5, 116 Petrova, 2006, Global nature of the seismogravitational oscillations of the Earth, Izv. Phys. Solid Earth, 42, 114, 10.1134/S1069351306020029 Rasskazov, 2012, Rock mechanics and dynamic features of overburdern pressure at the Antei deposit, Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 3 Rasskazov, 2013, Development and updating of the monitoring system for overpressure hazard at mines of JSC PPGKhO, Gornyi Zhurnal, 8, 9 Rasskazov, 2014, Present-day stress-strain state in the upper crust of the amurian lithosphere plate, Izv. Phys. Solid Earth, 50, 444, 10.1134/S1069351314030082 Shved, 2013, Detecting global atmospheric oscillations by seismic instruments, Izv. Phys. Solid Earth, 49, 278, 10.1134/S1069351313010138 Sidorov, 2013, The origin of low-frequency peaks in seismic noise spectra, Izv. RAN, Fizika Zemli, 1, 63 Takemoto, 2006, A 100 m laser strainmeter system in the Kamioka Mine, Japan, for precise observations of tidal strains, J. Geodyn., 41, 23, 10.1016/j.jog.2005.08.009