A 3D Macroporous Alginate Graphene Scaffold with an Extremely Slow Release of a Loaded Cargo for In Situ Long‐Term Activation of Dendritic Cells

Advanced healthcare materials - Tập 8 Số 5 - 2019
Arjyabaran Sinha1, Young‐Jin Choi1, Minh Hoang Nguyen1, Thanh Loc Nguyen1, Seung Woo Choi2, Jaeyun Kim3,2,1
1School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
2Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST), SKKU, Suwon, 16419 Republic of Korea
3Biomedical Institute for Convergence at SKKU (BICS), SKKU, Suwon, 16419 Republic of Korea

Tóm tắt

Abstract

Ex vivo manipulation of autologous antigen‐presenting cells and their subsequent infusion back into the patient to dictate immune response is one of the promising strategies in cancer immunotherapy. Here, a 3D alginate scaffold embedded with reduced graphene oxide (rGO) is proposed as a vaccine delivery platform for in situ long‐term activation of antigen‐presenting dendritic cells (DCs). High surface area and hydrophobic surface of the rGO component of the scaffold provide high loading and a very slow release of a loaded antigen, danger signal, and/or chemoattractant from the scaffold. This approach offers long‐term bioavailability of the loaded cargo inside the scaffold for manipulation of recruited DCs. After mice are subcutaneously vaccinated with the macroporous alginate graphene scaffold (MAGS) loaded with ovalbumin (OVA) and granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), this scaffold recruits a significantly high number of DCs, which present antigenic information via major histocompatibility complex class I for a long period. Furthermore, an MAGS loaded with OVA, GM‐CSF, and CpG promotes production of activated T cells and memory T cells, leading to the suppression of OVA‐expressing B16 melanoma tumor growth in a prophylactic vaccination experiment. This study indicates that an MAGS can be a strong candidate for long‐term programming and modulating immune cells in vivo.

Từ khóa


Tài liệu tham khảo

10.1038/nm1643

10.1038/32588

10.1038/nature06175

10.1016/j.coi.2005.02.003

10.1146/annurev.immunol.18.1.767

10.1016/S0952-7915(03)00015-3

10.1038/nrc3258

10.4049/jimmunol.170.6.2817

10.1038/nri2173

10.1038/nm1295-1297

Su Z., 2003, Cancer Res., 63, 2127

10.4049/jimmunol.166.6.4254

10.1126/science.aaa4967

10.1038/nature18300

10.1385/IR:29:1-3:197

10.1053/j.seminoncol.2015.10.002

10.1007/s00262-003-0485-5

10.1172/JCI0215962

Pachella L. A., 2015, J. Adv. Pract. Oncol., 6, 212

10.1038/nri.2017.89

10.1016/j.coi.2012.12.008

10.1038/nbt.3119

10.1016/j.nantod.2011.08.005

10.1038/nmat3758

10.1002/adhm.201701469

10.1016/j.biomaterials.2008.05.033

10.1038/nmat2357

Ali1 O. A., 2009, Sci. Transl. Med., 1, 8ra19

10.1038/nbt.3071

10.1038/s41563-018-0028-2

10.1021/acs.nanolett.7b02636

10.1002/adma.201402105

10.1002/adma.201606036

10.1002/adhm.201600773

10.1016/j.biomaterials.2012.03.041

10.1002/adfm.201502139

10.1002/adhm.201700355

10.1073/pnas.1007862108

10.1021/acs.chemmater.7b02197

10.1021/acsami.7b13534

10.1016/j.ijbiomac.2015.11.061

10.1021/ja01539a017

10.1039/C6CS00915H

Santana B. P., 2013, Bio. Med. Res. Tnt., 2013, 307602

10.1002/adma.201301082

10.1002/adma.201200846

10.1146/annurev.immunol.26.021607.090254

10.1002/adhm.201701393

10.1016/j.progpolymsci.2011.06.003

10.1097/01.TP.0000131152.71117.0E

10.1016/S0168-3659(98)00116-3

10.1016/j.jconrel.2012.01.043

10.1126/sciadv.1600519

10.4155/tde-2017-0014

10.1002/adhm.201601160