A 1H NMR method for the estimation of hydrogen content for all petroleum products

Journal of Analytical Science and Technology - Tập 6 - Trang 1-10 - 2015
Sujit Mondal1, Ravindra Kumar1, Veena Bansal1, M. B. Patel1
1Indian Oil Corporation Limited, R&D Center, Faridabad, India

Tóm tắt

Hydrogen content is an important parameter for all petroleum products, because the performance of the products for specific application depends on the concentration of hydrogen in it. Further, hydrogen content can be used as a measure for quality control during the production process and assess the quality of the products, which is governed by the catalyst used. Therefore, to get the desired petroleum products like MS and HSD, pilot scale evaluation of different catalysts plays an important role in problem solving during troubleshooting in refineries. During evaluation studies the performance of catalyst depends upon the hydrogen consumption and mass balance in any catalytic process. In order to calculate total hydrogen consumption during production of different petroleum products an effort has been made to develop a universal method based on nuclear magnetic resonance (NMR) technique, that allows estimating hydrogen content in all petroleum fractions, ranging from IBP to 530+ °C. The method uses hexamethyldisiloxane (HMDSO) for the first time as a quantitative reference standard respect to which the H content of unknown samples has been estimated. The newly developed method can also determine H/C and O/C ratio of ethanol blended fuel in a given sample without any additional experimentation. Hydrogen content for twenty five model compounds was determined along with nearly hundred petroleum fractions. There has been found to be good correlation between the existing ASTM D5291 and developed NMR spectroscopic based methods. For low boiling petroleum fractions, where ASTM D5291 is not suitable, there is no direct way to correlate the data. However, as the hydrogen content estimated for some model compounds shows a high degree of correlation R 2 = 0.998, between theoretical values and estimated values, indirectly validate the developed method. A universal NMR based method for the estimation of hydrogen content in all sort of petroleum products irrespective of their origin, composition, boiling range has been developed.

Tài liệu tham khảo

Abu-Dagga F, Ruegger H (1988) Evaluation of low boiling crude oil fractions by NMR spectroscopy. Average structural parameters and identification of aromatic compounds by 2D NMR spectroscopy. Fuel 67:1255–62 Allen DTNMR (1985) Characterization and property estimation in heavy fuels. Preprints: Division of Petroleum Chemistry. Am Chem Soc 30(2):270–3, Published by ACS, Washington, DC, USA ASTM D-3701 (1992) Standard test method for hydrogen content of aviation fuels by low resolution nuclear magnetic resonance spectroscopy. ASTM, West Conshohocken ASTM D-4808 (1992) Standard test methods for hydrogen content of light distillates, middle distillates, gas oils, and residua by low resolution nuclear magnetic resonance spectroscopy. ASTM, West Conshohocken ASTM D-5291 (1996) Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in petroleum products and lubricants. ASTM, West Conshohocken ASTM D-7171 (2011) Standard test method for hydrogen content of middle distillate petroleum products by low-resolution pulsed nuclear magnetic resonance spectroscopy. ASTM, West Conshohocken Bansal V, Kapur GS, Sarpal AS, Kagdiyal V, Jain SK, Srivastava SK, Bhatnagar AK (1998) Estimation of total aromatics and their distribution as mono and global di-plus aromatics in diesel-range products by NMR spectroscopy. Energy Fuels 12:1223–1227 Bansal V, Krishna GJ, Chopra A, Sarpal AS (2007) Detailed hydrocarbon characterization of RFCC feed stocks by NMR spectroscopic techniques. Energy Fuels 21:1024–1029 Bansal V, Kumar R, Krishna GJ, Patel MB, Sarpal AS, Basu B (2014) Transferable hydrogen by 1H nuclear magnetic resonance spectroscopy—vital structural aspects of petroleum heavier ends (370–660 °C) feed stocks. Fuel 118:148–155 Barni R, Zanini S, Riccardi C (2012) Characterization of the chemical kinetics in an O2/HMDSO RF plasma for material processing. Adv Phys Chem Artic ID 205380:1–6 Gautier S, Quignard A (1995) Low resolution 1H NMR: the ultimate tool for accurate determination of hydrogen content in petroleum products. Revue de l’Institut Francais du Petrole 50:267 Gillet S, Delpuech JJ, Valentin P, Escalier JC (1980) Optimum conditions for crude oil and petroleum product analysis by carbon-13 NMR spectroscopy. Anal Chem 52:813–817 Government to take a call on ethanol price soon (November 21, 2011). The Hindu, New Delhi Kennedy GJ, Kohout FC, Moy EA Jr (1998) Improved hydrogen determination in petroleum streams using a bench top pulsated NMR analyzer. Energy Fuels 12:812–817 Khadim MA, Wolny RA, Al-Dhuwaihi AS, Al-Hajri EA, Al-Ghamdi MA (2003) Determination of hydrogen and carbon contents in crude oil and petroleum fractions by NMR spectroscopy. Arabian J Sci Eng 28(2A):147–162 Kodibagkar VD, Cui W, Merritt ME, Mason RP (2006) Novel 1H NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magn Reson Med 55:743–748 Kodibagkar VD, Wang X, P-Torres J, Gulaka P, Mason RP (2008) Proton imaging of siloxanes to map tissue oxygenation levels (PISTOL): a tool for quantitative tissue oximetry. NMR Biomed 21:899–907 Kvalheim OM, Aksnes DW, Brekke T, Eide MO, Sletten E, Telnaes N (1985) Crude oil characterization and correlation by principal component analysis of C-13 NMR spectra. Anal Chem 57:2858–64 Mirotchnik K, Kantzas A, Starsud A, Aikman M (2001) A new method for group analysis of petroleum fractions in unconsolidated porous media. J Can Petr Tech 40:38–44 Poveda JC, Molina DR (2012) Average molecular parameters of heavy crude oils and their fractions using NMR spectroscopy. J Petroleum Sci Eng 84–85:1–7 Removal of reformulated gasoline oxygen content requirement (national) and revision of commingling prohibition to address non-oxygenated reformulated gasoline (national) (February 22, 2006). U.S. Environmental Protection Agency Sarpal AS, Kapur GS, Mukherjee S, Jain SK (1997) Estimation of oxygenates in gasoline by 13C NMR spectroscopy. Energy Fuels 11(3):662 Sarpal AS, Kapur GS, Bansal V, Jain SK, Srivastava SK (1998) Direct estimation of aromatic carbon content of base oils by 1H NMR spectroscopy. Petroleum Sci Tech 16:851–68 Smirnov MB, Melikhov VA, Frolov Ye B, Parenago OP (1992) 1H NMR study of unsaturated compounds in distillate fractions of olefin-containing crude oils. Petroleum Chem (English translation of Neftekhimiya) 32:441–7 Srivastava SP (1982) Quantitative measurement of the percentage of aromatic carbons in petroleum crudes by carbon-13 NMR spectroscopy. J Chem Tech Biotech 32:614–6 Young DC, Galya LG (1984) Determination of paraffinic, naphthenic, and aromatic carbon in petroleum derived materials by carbon-13 NMR spectroscopy. Liquid Fuels Tech 2:307–326