Aβ Induces Neuroinflammation and Microglial M1 Polarization via cGAS-STING-IFITM3 Signaling Pathway in BV-2 Cells
Tóm tắt
Microglia, innate immune cells of the brain, constantly monitor the dynamic changes of the brain microenvironment under physiological conditions and respond in time. Growing evidence suggests that microglia-mediated neuroinflammation plays an important role in the pathogenesis of Alzheimer’s disease. In this study, we investigated that the expression of IFITM3 was significantly upregulated in microglia under the Aβ treatment, and knockdown of IFITM3 in vitro suppressed the M1-like polarization of microglia. Moreover, IFITM3 was regulated by cGAS-STING signaling in activated microglia, and inhibition of cGAS-STING signaling reduces IFITM3 expression. Taken together, our findings suggested that the cGAS-STING-IFITM3 axis may be involved in Aβ-induced neuroinflammation in microglia.
Tài liệu tham khảo
Scheltens P, Blennow K, Breteler MM et al (2016) Alzheimer’s disease. Lancet 388(10043):505–517. https://doi.org/10.1016/S0140-6736(15)01124-1
Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766. https://doi.org/10.1152/physrev.2001.81.2.741
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. https://doi.org/10.1126/science.1072994
Ozben T, Ozben S (2019) Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem 72:87–89. https://doi.org/10.1016/j.clinbiochem.2019.04.001
D’Andrea MR, Cole GM, Ard MD (2004) The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol Aging 25(5):675–683. https://doi.org/10.1016/j.neurobiolaging.2003.12.026
Bolós M, Perea JR, Avila J (2017) Alzheimer’s disease as an inflammatory disease. Biomol Concepts 8(1):37–43. https://doi.org/10.1515/bmc-2016-0029
Escamilla-Tilch M, Filio-Rodríguez G, García-Rocha R et al (2013) The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol 91(10):601–610. https://doi.org/10.1038/icb.2013.58
Hopfner KP, Hornung V (2020) Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 21(9):501–521. https://doi.org/10.1038/s41580-020-0244-x
Wu J, Sun L, Chen X et al (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339(6121):826–830. https://doi.org/10.1126/science.1229963
Zhang X, Bai XC, Chen ZJ (2020) Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity 53(1):43–53. https://doi.org/10.1016/j.immuni.2020.05.013
Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17(10):1142–1149. https://doi.org/10.1038/ni.3558
Kwon OC, Song JJ, Yang Y et al (2021) SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol Med 13(4):e13076. https://doi.org/10.15252/emmm.202013076
Liao Y, Cheng J, Kong X et al (2020) HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Theranostics 10(21):9644–9662. https://doi.org/10.7150/thno.47651
Compton AA, Bruel T, Porrot F et al (2014) IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread. Cell Host Microbe 16(6):736–747. https://doi.org/10.1016/j.chom.2014.11.001
Rajapaksa US, Jin C, Dong T (2020) Malignancy and IFITM3: friend or foe? Front Oncol 10:593245. https://doi.org/10.3389/fonc.2020.593245
Bailey CC, Zhong G, Huang IC et al (2014) IFITM-Family proteins: the cell’s first line of antiviral defense. Annu Rev Virol 1:261–283. https://doi.org/10.1146/annurev-virology-031413-085537
Everitt AR, Clare S, Pertel T et al (2012) IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484(7395):519–523. https://doi.org/10.1038/nature10921
Mathys H, Adaikkan C, Gao F et al (2017) Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21(2):366c380. https://doi.org/10.1016/j.celrep.2017.09.039
Hur JY, Frost GR, Wu X et al (2020) The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature 586(7831):735–740. https://doi.org/10.1038/s41586-020-2681-2
Yao AY, Yan R (2002) Activity of Alzheimer’s γ-secretase is linked to changes of interferon-induced transmembrane proteins (IFITM) in innate immunity. Mol Neurodegener 15(1):69. https://doi.org/10.1186/s13024-020-00417-0
Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. https://doi.org/10.1007/s12035-014-9070-5
Peng Y, Zhuang J, Ying G et al (2020) Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. J Neuroinflammation 17(1):165. https://doi.org/10.1186/s12974-020-01830-4
Motani K, Kosako H (2010) BioID screening of biotinylation sites using the avidin-like protein tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING). J Biol Chem 295(32):11174–11183. https://doi.org/10.1074/jbc.RA120.014323
Tarkowski E, Andreasen N, Tarkowski A et al (2003) Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74(9):1200–1205. https://doi.org/10.1136/jnnp.74.9.1200
Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18(12):759–772. https://doi.org/10.1038/s41577-018-0051-1
Wan D, Jiang W, Hao J (2020) Research advances in how the cGAS-STING pathway controls the cellular inflammatory response. Front Immunol 11:615. https://doi.org/10.3389/fimmu.2020.00615
Reinert LS, Rashidi AS, Tran DN et al (2012) Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production. J Clin Invest 131(1):e136824. https://doi.org/10.1172/JCI136824
Jauhari A, Baranov SV, Suofu Y et al (2002) Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest 130(6):3124–3136. https://doi.org/10.1172/JCI135026
Lee JD, Woodruff TM (2021) TDP-43 puts the STING in ALS. Trends Neurosci 44(2):81–82. https://doi.org/10.1016/j.tins.2020.12.001
Paul BD, Snyder SH, Bohr VA (2021) Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and aging. Trends Neurosci 44(2):83–96. https://doi.org/10.1016/j.tins.2020.10.008
Li T, Chen ZJ (2018) The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 215(5):1287–1299. https://doi.org/10.1084/jem.20180139
Poddar S, Hyde JL, Gorman MJ et al (2016) The Interferon-Stimulated gene IFITM3 restricts infection and pathogenesis of arthritogenic and encephalitic alphaviruses. J Virol 90(19):8780–8794. https://doi.org/10.1128/JVI.00655-16
Wang X, Wu Z, Li Y et al (2020) p53 promotes ZDHHC1-mediated IFITM3 palmitoylation to inhibit japanese encephalitis virus replication. PLoS Pathog 16(10):e1009035. https://doi.org/10.1371/journal.ppat.1009035
Wang H, Tang F, Bian E et al (2020) IFITM3/STAT3 axis promotes glioma cells invasion and is modulated by TGF-β. Mol Biol Rep 47(1):433–441. https://doi.org/10.1007/s11033-019-05146-2
Ibi D, Nagai T, Nakajima A et al (2013) Astroglial IFITM3 mediates neuronal impairments following neonatal immune challenge in mice. Glia 61(5):679–693. https://doi.org/10.1002/glia.22461
Guo Y, Jiang F, Kong L et al (2019) Cutting Edge: USP27X Deubiquitinates and stabilizes the DNA sensor cGAS to regulate cytosolic DNA-Mediated signaling. J Immunol 203(8):2049–2054. https://doi.org/10.4049/jimmunol.1900514
Paludan SR, Reinert LS, Hornung V (2019) DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nat Rev Immunol 19(3):141–153. https://doi.org/10.1038/s41577-018-0117-0
Gonugunta VK, Sakai T, Pokatayev V et al (2017) Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. Cell Rep 21(11):3234–3242. https://doi.org/10.1016/j.celrep.2017.11.061