Aβ Induces Neuroinflammation and Microglial M1 Polarization via cGAS-STING-IFITM3 Signaling Pathway in BV-2 Cells

Neurochemical Research - Tập 48 - Trang 2881-2894 - 2023
Zheng Wu1, Wei Tang2, Fatima Elzahra E. M. Ibrahim1, Xuejing Chen1, Hongting Yan1, Chunmei Tao1, Zhiming Wang1, Yunchu Guo1, Yu Fu1, Qi Wang3, Yusong Ge1
1Department of Neurology, the Second Hospital of Dalian Medical University, Dalian City, China
2Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian City, China
3Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian City, China

Tóm tắt

Microglia, innate immune cells of the brain, constantly monitor the dynamic changes of the brain microenvironment under physiological conditions and respond in time. Growing evidence suggests that microglia-mediated neuroinflammation plays an important role in the pathogenesis of Alzheimer’s disease. In this study, we investigated that the expression of IFITM3 was significantly upregulated in microglia under the Aβ treatment, and knockdown of IFITM3 in vitro suppressed the M1-like polarization of microglia. Moreover, IFITM3 was regulated by cGAS-STING signaling in activated microglia, and inhibition of cGAS-STING signaling reduces IFITM3 expression. Taken together, our findings suggested that the cGAS-STING-IFITM3 axis may be involved in Aβ-induced neuroinflammation in microglia.

Tài liệu tham khảo

Scheltens P, Blennow K, Breteler MM et al (2016) Alzheimer’s disease. Lancet 388(10043):505–517. https://doi.org/10.1016/S0140-6736(15)01124-1 Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766. https://doi.org/10.1152/physrev.2001.81.2.741 Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. https://doi.org/10.1126/science.1072994 Ozben T, Ozben S (2019) Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem 72:87–89. https://doi.org/10.1016/j.clinbiochem.2019.04.001 D’Andrea MR, Cole GM, Ard MD (2004) The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol Aging 25(5):675–683. https://doi.org/10.1016/j.neurobiolaging.2003.12.026 Bolós M, Perea JR, Avila J (2017) Alzheimer’s disease as an inflammatory disease. Biomol Concepts 8(1):37–43. https://doi.org/10.1515/bmc-2016-0029 Escamilla-Tilch M, Filio-Rodríguez G, García-Rocha R et al (2013) The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol 91(10):601–610. https://doi.org/10.1038/icb.2013.58 Hopfner KP, Hornung V (2020) Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol 21(9):501–521. https://doi.org/10.1038/s41580-020-0244-x Wu J, Sun L, Chen X et al (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339(6121):826–830. https://doi.org/10.1126/science.1229963 Zhang X, Bai XC, Chen ZJ (2020) Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity 53(1):43–53. https://doi.org/10.1016/j.immuni.2020.05.013 Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17(10):1142–1149. https://doi.org/10.1038/ni.3558 Kwon OC, Song JJ, Yang Y et al (2021) SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol Med 13(4):e13076. https://doi.org/10.15252/emmm.202013076 Liao Y, Cheng J, Kong X et al (2020) HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Theranostics 10(21):9644–9662. https://doi.org/10.7150/thno.47651 Compton AA, Bruel T, Porrot F et al (2014) IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread. Cell Host Microbe 16(6):736–747. https://doi.org/10.1016/j.chom.2014.11.001 Rajapaksa US, Jin C, Dong T (2020) Malignancy and IFITM3: friend or foe? Front Oncol 10:593245. https://doi.org/10.3389/fonc.2020.593245 Bailey CC, Zhong G, Huang IC et al (2014) IFITM-Family proteins: the cell’s first line of antiviral defense. Annu Rev Virol 1:261–283. https://doi.org/10.1146/annurev-virology-031413-085537 Everitt AR, Clare S, Pertel T et al (2012) IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484(7395):519–523. https://doi.org/10.1038/nature10921 Mathys H, Adaikkan C, Gao F et al (2017) Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21(2):366c380. https://doi.org/10.1016/j.celrep.2017.09.039 Hur JY, Frost GR, Wu X et al (2020) The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature 586(7831):735–740. https://doi.org/10.1038/s41586-020-2681-2 Yao AY, Yan R (2002) Activity of Alzheimer’s γ-secretase is linked to changes of interferon-induced transmembrane proteins (IFITM) in innate immunity. Mol Neurodegener 15(1):69. https://doi.org/10.1186/s13024-020-00417-0 Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. https://doi.org/10.1007/s12035-014-9070-5 Peng Y, Zhuang J, Ying G et al (2020) Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. J Neuroinflammation 17(1):165. https://doi.org/10.1186/s12974-020-01830-4 Motani K, Kosako H (2010) BioID screening of biotinylation sites using the avidin-like protein tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING). J Biol Chem 295(32):11174–11183. https://doi.org/10.1074/jbc.RA120.014323 Tarkowski E, Andreasen N, Tarkowski A et al (2003) Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74(9):1200–1205. https://doi.org/10.1136/jnnp.74.9.1200 Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18(12):759–772. https://doi.org/10.1038/s41577-018-0051-1 Wan D, Jiang W, Hao J (2020) Research advances in how the cGAS-STING pathway controls the cellular inflammatory response. Front Immunol 11:615. https://doi.org/10.3389/fimmu.2020.00615 Reinert LS, Rashidi AS, Tran DN et al (2012) Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production. J Clin Invest 131(1):e136824. https://doi.org/10.1172/JCI136824 Jauhari A, Baranov SV, Suofu Y et al (2002) Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest 130(6):3124–3136. https://doi.org/10.1172/JCI135026 Lee JD, Woodruff TM (2021) TDP-43 puts the STING in ALS. Trends Neurosci 44(2):81–82. https://doi.org/10.1016/j.tins.2020.12.001 Paul BD, Snyder SH, Bohr VA (2021) Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and aging. Trends Neurosci 44(2):83–96. https://doi.org/10.1016/j.tins.2020.10.008 Li T, Chen ZJ (2018) The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 215(5):1287–1299. https://doi.org/10.1084/jem.20180139 Poddar S, Hyde JL, Gorman MJ et al (2016) The Interferon-Stimulated gene IFITM3 restricts infection and pathogenesis of arthritogenic and encephalitic alphaviruses. J Virol 90(19):8780–8794. https://doi.org/10.1128/JVI.00655-16 Wang X, Wu Z, Li Y et al (2020) p53 promotes ZDHHC1-mediated IFITM3 palmitoylation to inhibit japanese encephalitis virus replication. PLoS Pathog 16(10):e1009035. https://doi.org/10.1371/journal.ppat.1009035 Wang H, Tang F, Bian E et al (2020) IFITM3/STAT3 axis promotes glioma cells invasion and is modulated by TGF-β. Mol Biol Rep 47(1):433–441. https://doi.org/10.1007/s11033-019-05146-2 Ibi D, Nagai T, Nakajima A et al (2013) Astroglial IFITM3 mediates neuronal impairments following neonatal immune challenge in mice. Glia 61(5):679–693. https://doi.org/10.1002/glia.22461 Guo Y, Jiang F, Kong L et al (2019) Cutting Edge: USP27X Deubiquitinates and stabilizes the DNA sensor cGAS to regulate cytosolic DNA-Mediated signaling. J Immunol 203(8):2049–2054. https://doi.org/10.4049/jimmunol.1900514 Paludan SR, Reinert LS, Hornung V (2019) DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nat Rev Immunol 19(3):141–153. https://doi.org/10.1038/s41577-018-0117-0 Gonugunta VK, Sakai T, Pokatayev V et al (2017) Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. Cell Rep 21(11):3234–3242. https://doi.org/10.1016/j.celrep.2017.11.061