Superrigidity and countable Borel equivalence relations
Tài liệu tham khảo
Adams, 1990, Trees and amenable equivalence relations, Ergodic Theory Dyn. Systems, 10, 1, 10.1017/S0143385700005368
Adams, 2002, Containment does not imply Borel reducibility, vol. 58, 1
Adams, 2000, Linear algebraic groups and countable Borel equivalence relations, J. Amer. Math. Soc., 13, 909, 10.1090/S0894-0347-00-00341-6
Bass, 1964, Sous-groupes d'indice fini dans SLn(Z), Bull. Amer. Math. Soc., 70, 385, 10.1090/S0002-9904-1964-11107-1
Bekka, 2000, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, vol. 269
Curtis, 1962
Dixon, 1991, Analytic pro-p Groups, vol. 157
Dougherty, 1994, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc., 341, 193, 10.1090/S0002-9947-1994-1149121-0
Feldman, 1977, Ergodic equivalence relations, cohomology and von Neumann algebras, I, Trans. Amer. Math. Soc., 234, 289, 10.1090/S0002-9947-1977-0578656-4
Furman, 1999, Gromov 's measure equivalence and rigidity of higher rank lattices, Ann. Math., 150, 1059, 10.2307/121062
Furman, 1999, Orbit equivalence rigidity, Ann. Math., 150, 1083, 10.2307/121063
Gefter, 1996, Outer automorphism group of the ergodic equivalence relation generated by translations of dense subgroup of compact group on its homogeneous space, Publ. RIMS, Kyoto Univ., 32, 517, 10.2977/prims/1195162855
Gefter, 1988, Fundamental groups for ergodic actions and actions with unit fundamental groups, Publ. RIMS, Kyoto Univ., 24, 821, 10.2977/prims/1195173929
S. Jackson, A.S. Kechris, A. Louveau, Countable Borel equivalence relations, J. Math. Logic, to appear.
Kechris, 1992, Countable sections for locally compact group actions, Ergodic Theory and Dynamical Systems, 12, 283, 10.1017/S0143385700006751
Kechris, 1995
Onishchik, 2000, Lie Groups and Lie Algebras II, vol. 21
Platonov, 1994
Ratner, 1991, On Raghunathan's measure conjecture, Ann. Math., 134, 545, 10.2307/2944357
Srivastava, 1998, A Course on Borel Sets, vol. 180
S. Thomas, On the complexity of the classification problem for torsion-free abelian groups of rank two, Acta Math., to appear.
S. Thomas, The classification problem for torsion-free abelian groups of finite rank, 2000, preprint.
Thomas, 2002, Some applications of superrigidity to Borel equivalence relations, vol. 58, 129
Zimmer, 1984