Phenotype-first hypotheses, spandrels and early metazoan evolution

History and Philosophy of the Life Sciences - Tập 44 - Trang 1-23 - 2022
Joshua Rust1
1Stetson University, Florida, USA

Tóm tắt

Against the neo-Darwinian assumption that genetic factors are the principal source of variation upon which natural selection operates, a phenotype-first hypothesis strikes us as revolutionary because development would seem to constitute an independent source of variability. Richard Watson and his co-authors have argued that developmental memory constitutes one such variety of phenotypic variability. While this version of the phenotype-first hypothesis is especially well-suited for the late metazoan context, where animals have a sufficient history of selection from which to draw, appeals to developmental memory seem less plausible in the evolutionary context of the early metazoans. I provide an interpretation of Stuart Newman’s account of deep metazoan phylogenesis that suggests that spandrels are, in addition to developmental memory, an important reservoir of phenotypic variability. I conclude by arguing that Gerd Müller’s “side-effect hypothesis” is an illuminating generalization of the proposed non-Watsonian version of the phenotype-first hypothesis.

Tài liệu tham khảo

Abedin, M., & Nicole King (2010). Diverse evolutionary paths to cell adhesion. Trends in Cell Biology, 20(12), 734–742. https://doi.org/10.1016/j.tcb.2010.08.002 Alegado, R. A., Laura, W., Brown, S., Cao, R. K., Dermenjian, R., Zuzow, S. R., Fairclough, J., Clardy, & King, N. (2012). A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. ELife 1 (October): e00013. https://doi.org/10.7554/eLife.00013 Altenberg, L. (1995). Genome growth and the evolution of the genotype-phenotype map. In W. Banzhaf & F. H. Eeckman (Eds.), Evolution and Biocomputation, (pp. 205–259). Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/3-540-59046-3_11 Arthur, W. (1997). The origin of animal body plans: A study in evolutionary developmental biology. Cambridge University Press Badyaev, A. V. (2010). The beak of the other finch: Coevolution of genetic covariance structure and developmental modularity during adaptive evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1543), 1111–1126. https://doi.org/10.1098/rstb.2009.0285 Boraas, M., Seale, D., & Boxhorn, J. (1998). Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity. Evolutionary Ecology, 12(2), 153–164. https://doi.org/10.1023/A:1006527528063 Brigandt, I. (2007). Typology now: Homology and developmental constraints explain evolvability. Biology & Philosophy, 22(5), 709–725. https://doi.org/10.1007/s10539-007-9089-3 Brown, R. L. (2014). What evolvability really is. The British Journal for the Philosophy of Science, 65(3), 549–572. https://doi.org/10.1093/bjps/axt014 Brunet, T., Larson, B. T., Linden, T. A., Vermeij, M. J. A., McDonald K., & King, N. E. (2019). Light-regulated collective contractility in a multicellular choanoflagellate. Science, 366(6463), 326–334. https://doi.org/10.1126/science.aay2346 Cuénot, L. (1914). Théorie de préadaptation. Scientia, 16, 60–67 Dennett, D. C. (1995). Darwin’s dangerous idea: Evolution and the meanings of life. Allen Lane Eldredge, N., & Gould S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In Thomas J. M. Schopf (Ed.), Models in paleobiology, (pp. 82–115). Freeman, Cooper and Company Eshel, I. & Matessi, C. (1998). Canalization, genetic assimilation and preadaptation: A quantitative genetic model. Genetics, 149(4), 2119–2133 Fagan, M. B. (2012). Waddington redux: Models and explanation in stem cell and systems biology. Biology & Philosophy, 27(2), 179–213. https://doi.org/10.1007/s10539-011-9294-y Fernández, R., & Gabaldón, T. (2020). Gene gain and loss across the metazoan tree of life. Nature Ecology & Evolution, 4(4), 524–533. https://doi.org/10.1038/s41559-019-1069-x Futuyma, D. J. (2013). Evolution. 3rd edition. Sinauer Associates (Oxford University Press) Gibson, G., & Dworkin, I. (2004). Uncovering cryptic genetic variation. Nature Reviews Genetics, 5(9), 681–690. https://doi.org/10.1038/nrg1426 Gould, S. J. (1997). The exaptive excellence of spandrels as a term and prototype. Proceedings of the National Academy of Sciences 94 (20), 10750–55. https://doi.org/10.1073/pnas.94.20.10750 Gould, S. J., & Lewontin, R. (1979). The spandrels of San Marco and the panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B. Biological Sciences 205 (1161), 581–598. https://doi.org/10.1098/rspb.1979.0086 Griffiths, P. E., & Gray, R. D. (1994). Developmental systems and evolutionary explanation. The Journal of Philosophy, 91(6), 277–304. https://doi.org/10.2307/2940982 Guijarro-Clarke, C., Holland, P. W. H., & Jordi, P. (2020). Widespread patterns of gene loss in the evolution of the animal kingdom. Nature Ecology & Evolution, 4(4), 519–523. https://doi.org/10.1038/s41559-020-1129-2 Hansen, T. F., & Pélabon, C. (2021). Evolvability: A quantitative-genetics perspective. Annual Review of Ecology Evolution and Systematics, 52(1), 153–175. https://doi.org/10.1146/annurev-ecolsys-011121-021241 Hayden, E. J., Ferrada, E., & Wagner, A. (2011). Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature, 474(7349), 92–95. https://doi.org/10.1038/nature10083 Herron, M. D., Borin, J. M., Boswell, J. C., Walker, J., Chen, I.-C. K., Knox, C. A., Boyd, M., Rosenzweig, F., & Ratcliff, W. C. (2019). De novo origins of multicellularity in response to predation. Scientific Reports, 9(1), 2328. https://doi.org/10.1038/s41598-019-39558-8 Houston, A. I. (2009). San Marco and evolutionary biology. Biology & Philosophy, 24(2), 215. https://doi.org/10.1007/s10539-008-9141-y Kirschner, M., & Gerhart, J. (2006). The plausibility of life: Resolving Darwin’s dilemma. Cincias Biol-Gicas e edition. Yale University Press Kumler, W. E., Jorge, J., Kim, P. M., Iftekhar, N., & Koehl, M. R. (2020). Does formation of multicellular colonies by choanoflagellates affect their susceptibility to capture by passive protozoan predators? Journal of Eukaryotic Microbiology, 67(5), 555–565. https://doi.org/10.1111/jeu.12808 Laland, K., Odling-Smee, J., & Endler, J. (2017). Niche construction, sources of selection and trait coevolution. Interface Focus, 7(5), 20160147. https://doi.org/10.1098/rsfs.2016.0147 Levis, N. A., & Pfennig, D. W. (2016). Evaluating ‘plasticity-first’ evolution in nature: Key criteria and empirical approaches. Trends in Ecology & Evolution, 31(7), 563–574. https://doi.org/10.1016/j.tree.2016.03.012 Lewin, R. (1980). “Evolutionary Theory Under Fire.” Science, November. https://doi.org/10.1126/science.6107993 Lewis, D. (1986). Postscript C to ‘Causation’: (Insensitive Causation) Philosophical Papers, II vol., (pp. 184–188). Oxford University Press Loison, L. (2019). Canalization and genetic assimilation: Reassessing the radicality of the waddingtonian concept of inheritance of acquired characters. Special issue ‘Canalization, a central concept in biology’, Seminars in Cell & Developmental Biology, 88, 4–13. https://doi.org/10.1016/j.semcdb.2018.05.009 Love, A. C. (2008). Explaining evolutionary innovations and novelties: Criteria of explanatory adequacy and epistemological prerequisites. Philosophy of Science, 75(5), 874–886. https://doi.org/10.1086/594531 Love, A. C., & Lugar, G. L. (2013). Dimensions of integration in interdisciplinary explanations of the origin of evolutionary novelty. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4, Part A), 537–550. https://doi.org/10.1016/j.shpsc.2013.09.008 Masel, J. (2006). Cryptic genetic variation is enriched for potential adaptations. Genetics, 172(3), 1985–1991. https://doi.org/10.1534/genetics.105.051649 Moss, L., & Newman, S. (2016). The grassblade beyond Newton: The pragmatizing of Kant for evolutionary-developmental biology. https://doi.org/10.13130/2240-9599/6686 Müller, G. B. (1990). Developmental mechanisms at the origin of morphological novelty: A side-effect hypothesis. In M. H. Nitecki (Ed.), Evolutionary innovations , 1st edition, (pp. 99–130). University Of Chicago Press Newman, S. (1995). Carnal boundaries: The commingling of flesh in theory and practice. In L. Birke, & R. Hubbard (Eds.), Reinventing biology: Respect for life and the creation of knowledge, (pp .191–227). Indiana University Press Newman, S. (2004). In conversation: Four critics of biotech. Irish Pages, 2(2), 155–168 Newman, S. (2016). Origination, variation, and conservation of animal body plan development. In Reviews in cell biology and molecular medicine, (pp. 130–162). American Cancer Society. https://doi.org/10.1002/3527600906.mcb.200400164.pub2 Newman, S. (2019a). Inherency of form and function in animal development and evolution. Frontiers in Physiology, 10, https://doi.org/10.3389/fphys.2019.00702 Newman, S. (2019b). Inherent forms and the evolution of evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 332(8), 331–338. https://doi.org/10.1002/jez.b.22895 Newman, S. (2020). The origins and evolution of animal identity. In A. S. Meincke, & J. Dupré Biological identity: Perspectives from metaphysics and the philosophy of biology, (pp. 128–148). Routledge Newman, S., & Bhat, R. (2009). Dynamical patterning modules: A ‘Pattern Language’ for development and evolution of multicellular form. The International Journal of Developmental Biology, 53(5–6), 693–705. https://doi.org/10.1387/ijdb.072481sn Newman, S., Forgacs, G., & Müller, G. (2003). Before programs: The physical origination of multicellular forms. International Journal of Developmental Biology, 50(2–3), 289–299. https://doi.org/10.1387/ijdb.052049sn Oyama, S. (2000). Causal democracy and causal contributions in developmental systems theory. Philosophy of Science, 67, S332–S347 Paps, J., & Holland, P. W. H. (2018). Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nature Communications, 9(1), 1730. https://doi.org/10.1038/s41467-018-04136-5 Peterson, T., & Müller, G. B. (2016). Phenotypic novelty in EvoDevo: The distinction between continuous and discontinuous variation and its importance in evolutionary theory. Evolutionary Biology, 43(3), 314–335. https://doi.org/10.1007/s11692-016-9372-9 Peterson, T., & Müller, G. B. (2018). Developmental finite element analysis of cichlid pharyngeal jaws: Quantifying the generation of a key innovation. Plos One, 13(1), e0189985. https://doi.org/10.1371/journal.pone.0189985 Pfennig, D. W. (Ed.). (2021). Phenotypic plasticity & evolution: Causes, consequences, controversies. CRC Press Pfennig, D. W., & Peter, J. M. (2000). Character displacement in polyphenic tadpoles. Evolution; International Journal of Organic Evolution, 54(5), 1738–1749. https://doi.org/10.1111/j.0014-3820.2000.tb00717.x Ros-Rocher, N., Pérez-Posada, A., Leger, M. M., & Iñaki, R. T. (2021). The origin of animals: An ancestral reconstruction of the unicellular-to-multicellular transition. Open Biology, 11(2), 1–21. https://doi.org/10.1098/rsob.200359 Ruiz-Trillo, I., & Mendoza, A. (2020). Towards understanding the origin of animal development. Development, 147(23), dev192575. https://doi.org/10.1242/dev.192575 Rust, J. (2021). Von Baer, the intensification of uniqueness, and historical explanation. History and Philosophy of the Life Sciences, 43(4), 122. https://doi.org/10.1007/s40656-021-00473-9 Saunders, P. (1993). The organism and a dynamical system. In W. Stein, & F. J. Varela (Eds.), Thinking About Biology. CRC Press Schmalhausen, I. (1949). Factors of evolution: The theory of stabilizing selection. (Translated by Theodosius Dobzhansky). Blakiston Co Sebé-Pedrós, A., Degnan, B. M., & Iñaki, R. T. (2017). The origin of metazoa: A unicellular perspective. Nature Reviews Genetics, 18(8), 498–512. https://doi.org/10.1038/nrg.2017.21 Sharov, A. A. (2014). Evolutionary constraints or opportunities? Biosystems, 123: 9–18. https://doi.org/10.1016/j.biosystems.2014.06.004 Smith, J., Maynard, R., Burian, S., Kauffman, P., Alberch, J., Campbell, B., Goodwin, R., Lande, D., Raup, & Wolpert, L. (1985). Developmental constraints and evolution: A perspective from the mountain lake conference on development and evolution. The Quarterly Review of Biology 60 (3), 265–87. https://doi.org/10.1086/414425 Sober, E. (2014). The nature of selection: Evolutionary theory in philosophical focus. University of Chicago Press Stanley, S. M. (1973). An ecological theory for the sudden origin of multicellular life in the late precambrian. Proceedings of the National Academy of Sciences of the United States of America, 70(5), 1486–1489 Sterelny, K. (2007). What is evolvability? In M. Matthen, & C. Stephens (Eds.), Philosophy of biology, (pp. 163–178). Handbook of the philosophy of science. North-Holland. https://doi.org/10.1016/B978-044451543-8/50011-3 Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150(3811), 563–565. https://doi.org/10.1038/150563a0 Waddington, C. H. (1956). Principles of embryology. MacMillan Waddington, C. H. (1957). The strategy of the genes. George Allen and Unwin Waddington, C. H. (1958). Theories of evolution. In S. A. Barnett (Ed.), A century of Darwin, (pp. 1–18). William Heinemann Ltd. http://archive.org/details/centuryofdarwin0000barn Wagner, A. (2011). The origins of evolutionary innovations: A theory of transformative change in living systems. Oxford University Press Wagner, G., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50(3), 967–976. https://doi.org/10.2307/2410639 Watson, R. A., & Szathmáry, E. (2016). How can evolution learn? Trends in Ecology & Evolution, 31(2), 147–157. https://doi.org/10.1016/j.tree.2015.11.009 Watson, R. A., Wagner, G. P., Pavlicev, M., Weinreich, D. M., & Mills, R. (2014). The evolution of phenotypic correlations and ‘developmental memory.’ Evolution, 68(4), 1124–1138. https://doi.org/10.1111/evo.12337 West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 20(1), 249–278 West-Eberhard, M. J. (2003). Developmental plasticity and evolution. 1st edition. Oxford University Press West-Eberhard, M. J. (2021). Forward: A perspective on ‘plasticity.’ In D. W. Pfennig (Ed.), Phenotypic plasticity & evolution: Causes, consequences, controversies, (pp .ix–xxi). CRC Press Wilkins, A. S. (2008). Waddington’s unfinished critique of neo-Darwinian genetics: Then and now. Biological Theory, 3(3), 224–232. https://doi.org/10.1162/biot.2008.3.3.224 Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton University Press Williams, G. C. (1992). Natural selection: Domains, levels, and challenges. Oxford University Press Woodward, J. (2010). Causation in biology: Stability, specificity, and the choice of levels of explanation. Biology & Philosophy, 25(3), 287–318. https://doi.org/10.1007/s10539-010-9200-z Woodward, J. (2021). Causation with a human face: Normative theory and descriptive psychology. Oxford University Press