Reviewing microbial electrical systems and bacteriophage biocontrol as targeted novel treatments for reducing hydrogen sulfide emissions in urban sewer systems

Springer Science and Business Media LLC - Tập 17 - Trang 749-764 - 2018
Elizabeth R. Mathews1, Dean Barnett2, Steve Petrovski1, Ashley E. Franks1,3,4
1Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
2Western Water, Sunbury, Australia
3Centre for Future Landscapes, La Trobe University, Melbourne, Australia
4Securing Food, Water and Environment Research Focus Area, La Trobe University, Melbourne, Australia

Tóm tắt

Microbially induced concrete corrosion (MICC) is a costly, and ongoing problem affecting the infrastructure of water utilities worldwide. Traditionally MICC has been treated with chemicals and physical techniques that inhibit the release of hydrogen sulfide (H2S), preventing sulfuric acid formation and the consequent corrosion. However, these methods require continual dosing and monitoring to ensure process efficiency and prevent undue costs. This review focuses on recent research into two potential novel treatments for MICC: re-engineering the sewer sulfur cycle by removing sulfide using electrodes in microbial electrical systems as an alternative electron acceptor and; altering the microbial community using targeted bacteriophage biocontrol to reduce specific sulfide-producing bacteria. These novel treatments hold the potential to reduce water utilities reliance on continual chemical dosing providing a long-lasting treatment I believe necessitates further laboratory and field-trial investigation.

Tài liệu tham khảo

Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:1–7. https://doi.org/10.3389/fmicb.2010.00134 Anderson RT, Vrionis HA, Ortiz-Bernad I et al (2003) Stimulating the in situ activity of geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891. https://doi.org/10.1128/AEM.69.10.5884 Bergel A, Féron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904. https://doi.org/10.1016/j.elecom.2005.06.006 Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485. https://doi.org/10.1126/science.1066771 Bradley AS, Leavitt WD, Johnston DT (2011) Revisiting the dissimilatory sulfate reduction pathway. Geobiology 9:446–457. https://doi.org/10.1111/j.1472-4669.2011.00292.x Butti SK, Velvizhi G, Sulonen MLK et al (2016) Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sustain Energy Rev 53:462–476. https://doi.org/10.1016/j.rser.2015.08.058 Cai J, Zheng P, Qaisar M, Sun P (2014) Effect of electrode types on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Sep Purif Technol 134:20–25. https://doi.org/10.1016/j.seppur.2014.07.024 Candena F, Peters RW (1988) Evaluation of chemical oxidizers for hydrogen sulfide control. J Water Pollut Control Fed 60:1259–1263 Chambers LA, Trudinger PA (1975) Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction? J Bacteriol 123:36–40 Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496. https://doi.org/10.1016/j.elecom.2006.10.023 Chou TY, Whiteley CG, Lee DJ, Liao Q (2013) Control of dual-chambered microbial fuel cell by anodic potential: implications with sulfate reducing bacteria. Int J Hydrogen Energy 38:15580–15589. https://doi.org/10.1016/j.ijhydene.2013.04.074 Chou TY, Whiteley CG, Lee DJ (2014) Anodic potential on dual-chambered microbial fuel cell with sulphate reducing bacteria biofilm. Int J Hydrogen Energy 39:19225–19231. https://doi.org/10.1016/j.ijhydene.2014.03.236 Couvert A, Charron I, Laplanche A et al (2006) Treatment of odorous sulphur compounds by chemical scrubbing with hydrogen peroxide—stabilisation of the scrubbing solution. Chem Eng Sci 61:7240–7248. https://doi.org/10.1016/j.ces.2006.07.030 Dumas C, Mollica A, Féron D et al (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53:468–473. https://doi.org/10.1016/j.electacta.2007.06.069 Dutta PK, Rozendal RA, Yuan Z et al (2009) Electrochemical regeneration of sulfur loaded electrodes. Electrochem Commun 11:1437–1440. https://doi.org/10.1016/j.elecom.2009.05.024 Eaktasang N, Min H-S, Kang C, Kim HS (2013) Control of malodorous hydrogen sulfide compounds using microbial fuel cell. Bioprocess Biosyst Eng 36:1417–1425. https://doi.org/10.1007/s00449-012-0881-3 Fan Y, Xu S, Schaller R et al (2011) Biosensors and Bioelectronics Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens Bioelectron 26:1908–1912. https://doi.org/10.1016/j.bios.2010.05.006 Firer D, Friedler E, Lahav O (2008) Control of sulfide in sewer systems by dosage of iron salts: comparison between theoretical and experimental results, and practical implications. Sci Total Environ 392:145–156. https://doi.org/10.1016/j.scitotenv.2007.11.008 Frechen F-B, Romaker J, Giebel SM (2014) Controlling chemical dosing into sewers for odour and corrosion abatement. Chem Eng Trans 40:217–222. https://doi.org/10.3303/CET1440037 Ganigué R, Jiang G, Sharma K et al (2016) Online Control of magnesium hydroxide dosing for sulfide mitigation in sewers: algorithm development, simulation analysis, and field validation. J Environ Eng 142:04016069 1–04016069 9. https://doi.org/10.1061/(asce)ee.1943-7870.0001151 Ge H, Zhang L, Batstone DJ et al (2013) Impact of Iron salt dosage to sewers on downstream anaerobic sludge digesters: sulfide control and methane production. J Environ Eng 139:594–601. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000650 Goldnik E, Turek T (2016) Removal of hydrogen sulfide by permanganate based sorbents: experimental investigation and reactor modeling. Chem Eng Sci 151:51–63. https://doi.org/10.1016/j.ces.2016.04.059 Gomez-Alvarez V, Revetta RP, Domingo JWS (2012) Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 12:2–14. https://doi.org/10.1186/1471-2180-12-122 Gong C, Jiang X (2015) Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant. Can J Microbiol 61:539–544. https://doi.org/10.1139/cjm-2015-0142 Gong C, Heringa S, Singh R et al (2013) Isolation and characterization of bacteriophages specific to hydrogen-sulfide-producing bacteria. Can J Microbiol 59:39–45. https://doi.org/10.1139/cjm-2012-0245 Gong C, Liu X, Jiang X (2014) Application of bacteriophages specific to hydrogen sulfide-producing bacteria in raw poultry by-products. Poult Sci 93:702–710. https://doi.org/10.3382/ps.2013-03520 Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947. https://doi.org/10.1021/es050457e Grengg C, Mittermayr F, Baldermann A et al (2015) Microbiologically induced concrete corrosion: a case study from a combined sewer network. Cem Concr Res 77:16–25. https://doi.org/10.1016/j.cemconres.2015.06.011 Gutierrez O, Mohanakrishnan J, Sharma KR et al (2008) Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. Water Res 42:4549–4561. https://doi.org/10.1016/j.watres.2008.07.042 Gutierrez O, Park D, Sharma KR, Yuan Z (2009) Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Water Res 43:2549–2557. https://doi.org/10.1016/j.watres.2009.03.008 Gutierrez O, Park D, Sharma KR, Yuan Z (2010a) Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment. Water Res 44:3467–3475. https://doi.org/10.1016/j.watres.2010.03.023 Gutierrez O, Sudarjanto G, Sharma KR et al (2010b) SCORe-CT: a new method for testing effectiveness of sulfide control chemicals used in sewer systems. In: 6th International conference in sewer processes and networks SPN6 Habermann W, Pommer E-H (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35:128–133. https://doi.org/10.1007/BF00180650 Harada LK, Silva EC, Campos WF et al (2018) Biotechnological applications of bacteriophages: state of the art. Microbiol Res 212–213:38–58. https://doi.org/10.1016/j.micres.2018.04.007 Holmes DE, Bond DR, Lovley DR (2004a) Electron transfer by desulfobulbus propionicus to Fe(III) and Graphite electrodes. Appl Environ Microbiol 70:1234–1237. https://doi.org/10.1128/AEM.70.2.1234-1237.2004 Holmes DE, Bond DR, O’Neil RA et al (2004b) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190. https://doi.org/10.1007/s00248-003-0004-4 Islander RL, Devinny JS, Mansfeld F et al (1991) Microbial ecology of crown corrosion in sewers. J Environ Eng 117:751–770. https://doi.org/10.1061/(ASCE)0733-9372(1991)117:6(751) Jassim SAA, Limoges RG, El-Cheikh H (2016) Bacteriophage biocontrol in wastewater treatment. World J Microbiol Biotechnol 32:70. https://doi.org/10.1007/s11274-016-2028-1 Jefferson B, Hurst A, Stuetz R, Parsons SA (2002) A comparison of chemical methods for the control of odours in wastewater. Process Saf Environ Prot 80:93–99. https://doi.org/10.1205/095758202753553211 Jensen H, Biggs CA, Karunakaran E (2016) The importance of sewer biofilms. WIREs Water 3:487–494. https://doi.org/10.1002/wat2.1144 Jiang G, Gutierrez O, Sharma KR, Yuan Z (2010) Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. Water Res 44:4241–4251. https://doi.org/10.1016/j.watres.2010.05.030 Jiang G, Keating A, Corrie S et al (2013) Dosing free nitrous acid for sulfide control in sewers: results of field trials in Australia. Water Res 47:4331–4339. https://doi.org/10.1016/j.watres.2013.05.024 Krishnakumar B, Majumdar S, Manilal VB, Haridas A (2005) Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR). Water Res 39:639–647. https://doi.org/10.1016/j.watres.2004.11.015 Lee DJ, Liu X, Weng HL (2014) Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. Bioresour Technol 156:14–19. https://doi.org/10.1016/j.biortech.2013.12.129 Lee DJ, Lee C-Y, Chang J-S et al (2015) Treatment of sulfate/sulfide-containing wastewaters using a microbial fuel cell: single and two-anode systems. Int J Green Energy 12:998–1004. https://doi.org/10.1080/15435075.2014.910780 Liang FY, Deng H, Zhao F (2013) Sulfur pollutants treatment using microbial fuel cells from perspectives of electrochemistry and microbiology. Chin J Anal Chem 41:1133–1139. https://doi.org/10.1016/S1872-2040(13)60669-6 Lin H, Williams N, King A, Hu B (2016) Electrochemical sulfide removal by low-cost electrode materials in anaerobic digestion. Chem Eng J 297:180–192. https://doi.org/10.1016/j.cej.2016.03.086 Lin HW, Kustermans C, Vaiopoulou E et al (2017) Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers. Water Res 118:114–120. https://doi.org/10.1016/j.watres.2017.02.069 Liu R, Tursun H, Hou X et al (2017) Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage. Bioresour Technol 241:439–447. https://doi.org/10.1016/j.biortech.2017.05.122 Logan B (2008) Introduction. In: Microbial fuel cells. Wiley, Hoboken, NJ, pp 1–12 Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3:27–35. https://doi.org/10.1111/j.1758-2229.2010.00211.x Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480. https://doi.org/10.1103/PhysRevLett.50.1998 Lovley DR, Giovannoni SJ, White DC et al (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344. https://doi.org/10.1007/BF00290916 Meaden S, Koskella B (2013) Exploring the risks of phage application in the environment. Front Microbiol 4:1–8. https://doi.org/10.3389/fmicb.2013.00358 Morton RL, Yanko WA, Graham DW, Arnold RG (1991) Relationships between metal concentrations and crown corrosion in Los-Angeles-County sewers. Res J Water Pollut Control Fed 63:789–798 Moskowitz SM, Foster JM, Emerson J et al (2004) Clinically feasible biofilm susceptibility assay for isolates of pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922. https://doi.org/10.1128/JCM.42.5.1915 Muyzer G, Stams AJMM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454. https://doi.org/10.1038/nrmicro1892 Nielsen AH, Lens P, Vollertsen J, Hvitved-Jacobsen T (2005) Sulfide–iron interactions in domestic wastewater from a gravity sewer. Water Res 39:2747–2755. https://doi.org/10.1016/j.watres.2005.04.048 Noeiaghaei T, Mukherjee A, Dhami N, Chae S-R (2017) Biogenic deterioration of concrete and its mitigation technologies. Constr Build Mater 149:575–586. https://doi.org/10.1016/j.conbuildmat.2017.05.144 Okabe S, Ito T, Sugita K, Satoh H (2005) Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms. Appl Environ Microbiol 71:2520–2529. https://doi.org/10.1128/AEM.71.5.2520-2529.2005 Okabe S, Odagiri M, Ito T, Satoh H (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 73:971–980. https://doi.org/10.1128/AEM.02054-06 Olmstead WH, Hamlin H (1900) Converting portions of the Los Angeles outfall sewer into a septic tank. Eng News Am Railw J. 44:317–318 Padival NA, Kimbell WA, Redner JA (1995) Use of iron salts to control dissolved sulfide in trunk sewers. J Environ Eng 121:824–829. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:11(824) Park K, Lee H, Phelan S et al (2014) Mitigation strategies of hydrogen sulphide emission in sewer networks—a review. Int Biodeterior Biodegrad 95:251–261. https://doi.org/10.1016/j.ibiod.2014.02.013 Petrovski S, Seviour RJ, Tillett D (2011) Prevention of Gordonia and Nocardia stabilized foam formation by using bacteriophage GTE7. Appl Environ Microbiol 77:7864–7867. https://doi.org/10.1128/AEM.05692-11 Pikaar I, Rozendal RA, Yuan Z et al (2011) Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities. Water Res 45:2281–2289. https://doi.org/10.1016/j.watres.2010.12.025 Pikaar I, Li E, Rozendal RA et al (2012) Long-term field test of an electrochemical method for sulfide removal from sewage. Water Res 46:3085–3093. https://doi.org/10.1016/j.watres.2012.03.013 Pikaar I, Likosova EM, Freguia S et al (2014a) Electrochemical abatement of hydrogen sulfide from waste streams. Crit Rev Environ Sci Technol 45:1555–1578. https://doi.org/10.1080/10643389.2014.966419 Pikaar I, Sharma KR, Hu S et al (2014b) Reducing sewer corrosion trough integrated urban water management. Science 345:812–814. https://doi.org/10.1126/science.1251418 Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082. https://doi.org/10.1021/es050986i Rabaey K, Van de Sompel K, Maignien L et al (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40:5218–5224. https://doi.org/10.1021/es060382u Rauch W, Kleidorfer M (2014) Replace contamination, not the pipes. Science 345:734–735. https://doi.org/10.1126/science.1258654 Richter H, McCarthy K, Nevin KP et al (2008) Electricity generation by geobacter sulfurreducens attached to gold electrodes. Langmuir 24:4376–4379 Rostami A, Akradi J (2010) A highly efficient, green, rapid, and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solvent-free conditions. Tetrahedron Lett 51:3501–3503. https://doi.org/10.1016/j.tetlet.2010.04.103 Santo Domingo JW, Revetta RP, Iker B et al (2011) Molecular survey of concrete sewer biofilm microbial communities. Biofouling J Bioadhesion Biofilm Res 27:993–1001. https://doi.org/10.1080/08927014.2011.618637 Shi X, Xie N, Gong J (2011) Recent progress in the research on microbially influenced corrosion: a Bird’ s eye view through the engineering lens. Recent Patents Corros Sci 1:118–131. https://doi.org/10.2174/1877610811101020118 Shrout JD, Nerenberg R (2012) Monitoring bacterial Twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environ Sci Technol 46:1995–2005. https://doi.org/10.1021/es203933h Sudarjanto G, Gutierrez O, Ren G, Yuan Z (2013) Laboratory assessment of bioproducts for sulphide and methane control in sewer systems. Sci Total Environ 443:429–437. https://doi.org/10.1016/j.scitotenv.2012.10.083 Summer E, Summer NS (2012) United States Patent No: US 8,241,498 B2—process for remediating biofouling in water systems with virulent bacteriophage Summer EJ, Summer NS, Janes C et al (2011) Phage of sulfate reducing bacteria isolated from high saline environment. In: NACE international corrosion 2011 conference and expo, pp 1–12 Sun M, Mu Z-X, Chen Y-P et al (2009) Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Environ Sci Technol 43:3372–3377. https://doi.org/10.1021/es802809m Talaiekhozani A, Bagheri M, Goli A, Khoozani MRT (2016) An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. J Environ Manage 170:186–206. https://doi.org/10.1016/j.jenvman.2016.01.021 ter Heijne A, Hamelers HVM, Saakes M, Buisman CJN (2008) Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta 53:5697–5703. https://doi.org/10.1016/j.electacta.2008.03.032 Tomar M, Abdullah THA (1994) Evaluation of chemicals to control the generation of malodorous hydrogen sulfide in waste water. Water Res 28:2545–2552. https://doi.org/10.1016/0043-1354(94)90072-8 Vincke E, Boon N, Verstraete W (2001) Analysis of the microbial communities on corroded concrete sewer pipes—a case study. Appl Microbiol Biotechnol 57:776–785. https://doi.org/10.1007/s002530100826 Vollertsen J, Nielsen AH, Jensen HS et al (2008) Corrosion of concrete sewers—the kinetics of hydrogen sulfide oxidation. Sci Total Environ 394:162–170. https://doi.org/10.1016/j.scitotenv.2008.01.028 Wardman C, Nevin KP, Lovley DR (2014) Real-time monitoring of subsurface microbial metabolism with graphite electrodes. Front Microbiol 5:1–7. https://doi.org/10.3389/fmicb.2014.00621 Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344. https://doi.org/10.1016/j.biortech.2011.07.019 Wei S, Jiang Z, Liu H et al (2013) Microbiologically induced deterioration of concrete—a review. Braz J Microbiol 44:1001–1007. https://doi.org/10.1590/S1517-83822014005000006 Wells T, Melchers RE (2014) An observation-based model for corrosion of concrete sewers under aggressive conditions. Cem Concr Res 61–62:1–10. https://doi.org/10.1016/j.cemconres.2014.03.013 Wells T, Melchers RE (2015) Modelling concrete deterioration in sewers using theory and field observations. Cem Concr Res 77:82–96. https://doi.org/10.1016/j.cemconres.2015.07.003 Wells T, Melchers RE, Bond P (2009) Factors involved in the long term corrosion of concrete sewers. In: 49th Annual conference of the Australasian corrosion association 2009: corrosion and prevention 2009, pp 345–356 Wells T, Melchers R, Joseph A et al (2012) A collaborative investigation of microbial corrosion of concrete sewer pipe in Australia. In: Proceedings of OzWater-12 Australia's National Water Conference and Exhibition, Sydney, NSW, pp 8–10 Wittebole X, De Roock S, Opal SM (2014) A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5:226–235. https://doi.org/10.4161/viru.25991 Wu H, Moser C, Wang H-Z et al (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7:1–7. https://doi.org/10.1038/ijos.2014.65 Wu B, Wang R, Fane AG (2017) The roles of bacteriophages in membrane-based water and wastewater treatment processes: a review. Water Res 110:120–132. https://doi.org/10.1016/j.watres.2016.12.004 Yongsiri C, Vollertsen J, Hvitved-Jacobsen T (2004) Hydrogen sulfide emission in sewer networks: a two phase modelling approach to the sulfur cycle. Water Sci Technol 50:161–168. https://doi.org/10.2166/wst.2004.0251 Zarasvand KA, Rai VR (2014) Microorganisms: induction and inhibition of corrosion in metals. Int Biodeterior Biodegrad 87:66–74. https://doi.org/10.1016/j.ibiod.2013.10.023 Zhang L, De Schryver P, De Gusseme B et al (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42:1–12. https://doi.org/10.1016/j.watres.2007.07.013 Zhou M, Chi M, Luo J et al (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435. https://doi.org/10.1016/j.jpowsour.2011.01.012