A computational study of a model of single-crystal strain-gradient viscoplasticity with an interactive hardening relation
Tài liệu tham khảo
Anand, 1996, A computational procedure for rate-independent crystal plasticity, J. Mech. Phys. Solids, 44, 525, 10.1016/0022-5096(96)00001-4
Anand, 2005, A one-dimensional theory of strain-gradient plasticity: Formulation, analysis, numerical results, J. Mech. Phys. Solids, 53, 1789, 10.1016/j.jmps.2005.03.003
Arsenlis, 2004, On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals, J. Mech. Phys. Solids, 52, 1213, 10.1016/j.jmps.2003.12.007
Asaro, 1983, Crystal plasticity, J. Appl. Mech., ASME, 50, 921, 10.1115/1.3167205
Asaro, 1985, Texture development and strain hardening in rate dependent polycrystals, Acta Metall., 33, 923, 10.1016/0001-6160(85)90188-9
Ashby, 1970, The deformation of plastically non-homogeneous materials, Philos. Mag., 21, 399, 10.1080/14786437008238426
Bardella, 2008, Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity, J. Mech. Phys. Solids, 56, 2906, 10.1016/j.jmps.2008.04.001
Bardella, 2013, Latent hardening size effect in small-scale plasticity, Model. Simulat. Mater. Sci. Eng., 21, 055009, 10.1088/0965-0393/21/5/055009
Bargmann, 2013, Microscopic temperature field prediction during adiabatic loading in a gradient extended crystal plasticity theory, Int. J. Solids Struct., 50, 899, 10.1016/j.ijsolstr.2012.11.010
Bargmann, 2011, Modeling of polycrystals using a gradient crystal plasticity theory that includes dissipative microstresses, Eur. J. Mech. A/Solids, 30, 719, 10.1016/j.euromechsol.2011.04.006
Bargmann, 2010, Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies, Philos. Mag., 90, 1263, 10.1080/14786430903334332
Bargmann, 2011, An extended crystal plasticity model for latent hardening in polycrystals, Comput. Mech., 48, 631, 10.1007/s00466-011-0609-2
Bulatov, 2006, Dislocation multi-junctions and strain hardening, Nature, 440, 1174, 10.1038/nature04658
Conti, 2005, Dislocation microstructures and the effective behavior of single crystals, Arch. Rat. Mech. Anal., 176, 103, 10.1007/s00205-004-0353-2
Ekh, 2007, Gradient crystal plasticity as part of the computational modeling of polycrystals, Int. J. Numer. Meth. Eng., 72, 197, 10.1002/nme.2015
Ekh, 2011, Influence of grain boundary conditions on modeling of size-dependence in polycrystals, Acta Mech., 218, 103, 10.1007/s00707-010-0403-9
Evers, 2004, Non-local crystal plasticity model with intrinsic ssd and gnd effects, J. Mech. Phys. Solids, 52, 2379, 10.1016/j.jmps.2004.03.007
Fleck, 2001, A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, 49, 2245, 10.1016/S0022-5096(01)00049-7
Gao, 2003, Geometrically necessary dislocation and size-dependent plasticity, Scripta Mater., 48, 113, 10.1016/S1359-6462(02)00329-9
Gurtin, 2000, On the plasticity of single crystals:free energy, microforces, plastic-strain gradients, J. Mech. Phys. Solids, 48, 989, 10.1016/S0022-5096(99)00059-9
Gurtin, 2002, A theory of viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids, 50, 5, 10.1016/S0022-5096(01)00104-1
Gurtin, 2008, A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation, J. Mech. Phys. Solids, 56, 640, 10.1016/j.jmps.2007.05.002
Gurtin, 2005, A theory of strain gradient plasticity for isotropic, plastically irrotational materials. Part II: Finite deformations, Int. J. Plasticity, 21, 2297, 10.1016/j.ijplas.2005.01.006
Gurtin, M.E., Reddy, B.D., 2014. Gradient single-crystal plasticity within a miseshill framework based on a new formulation of self- and latent-hardening. J. Mech. Phys. Solids, in press, http://dx.doi.org/10.1016/j.jmps.2014.01.002, 2014.
Gurtin, 2007, Gradient single-crystal plasticity with free energy dependent on dislocation densities, J. Mech. Phys. Solids, 55, 1853, 10.1016/j.jmps.2007.02.006
Gurtin, 2010
Hall, 1951, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Lond. B, 64, 747, 10.1088/0370-1301/64/9/303
Henning, 2005, Local mechanical behavior and slip band formation within grains of thin sheets, Acta Mater., 53, 1285, 10.1016/j.actamat.2004.10.052
Hutchinson, 1970, Elastic-plastic behaviour of polycrystalline metals and composites, Proc. Roy. Soc. Lond. A, 319, 247, 10.1098/rspa.1970.0177
Klusemann, 2013, Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior, Comput. Mater. Sci., 80, 51, 10.1016/j.commatsci.2013.04.016
Klusemann, 2013, Modeling and simulation of deformation behavior, orientation gradient development and heterogeneous hardening in thin sheets with coarse texture, Int. J. Plasticity, 50, 109, 10.1016/j.ijplas.2013.04.004
Lele, 2008, A small-deformation strain-gradient theory for isotropic viscoplastic materials, Philos. Mag., 88, 3655, 10.1080/14786430802087031
Levkovitch, 2006, On the large-deformation- and continuum-based formulation of models for extended crystal plasticity, Int. J. Solids Struct., 43, 7246, 10.1016/j.ijsolstr.2006.05.010
Limkumnerd, 2008, Statistical approach to dislocation dynamics: From dislocation correlations to a multiple-slip ontinuum theory of plasticity, Phys. Rev. B, 77, 184111, 10.1103/PhysRevB.77.184111
Needleman, 2003, Preface to the viewpoint set on: geometrically necessary dislocations and size dependent plasticity, Scripta Mater., 48, 109, 10.1016/S1359-6462(02)00336-6
Niordson, 2010, Strain gradient effects on cyclic plasticity, J. Mech. Phys. Solids, 58, 542, 10.1016/j.jmps.2010.01.007
Nix, 1998, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids, 46, 411, 10.1016/S0022-5096(97)00086-0
Norton, 1929
Nye, 1953, Some geometric relations in dislocated crystals, Acta Metall., 1, 153, 10.1016/0001-6160(53)90054-6
Peirce, 1982, An analysis of nonuniform and localized deformation in ductile single crystals, Acta Metall., 30, 1087, 10.1016/0001-6160(82)90005-0
Petch, 1953, The cleavage strength of polycrystals, I, J. Iron Steel Inst., 174, 25
Povall, 2013, Finite element simulation of large-strain single-crystal viscoplasticity: an investigation of various hardening relations, Comput. Mater. Sci., 81, 386, 10.1016/j.commatsci.2013.08.043
Reddy, 2011, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: Single-crystal plasticity, Continuum Mech. Thermodyn., 23, 551, 10.1007/s00161-011-0195-8
Reddy, 2013, Some theoretical and computational aspects of single-crystal strain-gradient plasticity, Zeitsch. angew. Mathem. Mech. (ZAMM), 93, 844, 10.1002/zamm.201200101
Reddy, 2013, Variational formulations for single-crystal strain-gradient plasticity at large deformations, GAMM Mitteilungen, 36, 149, 10.1002/gamm.201310009
Shu, 1999, Strain gradient crystal plasticity: size-dependent deformation of bicrystals, J. Mech. Phys. Solids, 47, 297, 10.1016/S0022-5096(98)00081-7
Voyiadjis, 2009, Mechanics of strain gradient plasticity with particular reference to decomposition of the state variables into energetic and dissipative components, Int. J. Eng. Sci., 47, 1405, 10.1016/j.ijengsci.2009.05.013
Wulfinghoff, 2012, Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics, Proc. Royal Soc. A, 468, 2682, 10.1098/rspa.2012.0073
Yalcinkaya, 2012, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning, Int. J. Solids Struct., 49, 2625, 10.1016/j.ijsolstr.2012.05.029