A computational study of a model of single-crystal strain-gradient viscoplasticity with an interactive hardening relation

International Journal of Solids and Structures - Tập 51 - Trang 2754-2764 - 2014
Swantje Bargmann1,2, B. Daya Reddy3, Benjamin Klusemann1
1Institute of Continuum Mechanics and Material Mechanics, Hamburg University of Technology, Germany
2Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
3Centre for Research in Computational and Applied Mechanics, and Department of Mathematics and Applied Mathematics, University of Cape Town, 7701 Rondebosch, South Africa

Tài liệu tham khảo

Anand, 1996, A computational procedure for rate-independent crystal plasticity, J. Mech. Phys. Solids, 44, 525, 10.1016/0022-5096(96)00001-4 Anand, 2005, A one-dimensional theory of strain-gradient plasticity: Formulation, analysis, numerical results, J. Mech. Phys. Solids, 53, 1789, 10.1016/j.jmps.2005.03.003 Arsenlis, 2004, On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals, J. Mech. Phys. Solids, 52, 1213, 10.1016/j.jmps.2003.12.007 Asaro, 1983, Crystal plasticity, J. Appl. Mech., ASME, 50, 921, 10.1115/1.3167205 Asaro, 1985, Texture development and strain hardening in rate dependent polycrystals, Acta Metall., 33, 923, 10.1016/0001-6160(85)90188-9 Ashby, 1970, The deformation of plastically non-homogeneous materials, Philos. Mag., 21, 399, 10.1080/14786437008238426 Bardella, 2008, Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity, J. Mech. Phys. Solids, 56, 2906, 10.1016/j.jmps.2008.04.001 Bardella, 2013, Latent hardening size effect in small-scale plasticity, Model. Simulat. Mater. Sci. Eng., 21, 055009, 10.1088/0965-0393/21/5/055009 Bargmann, 2013, Microscopic temperature field prediction during adiabatic loading in a gradient extended crystal plasticity theory, Int. J. Solids Struct., 50, 899, 10.1016/j.ijsolstr.2012.11.010 Bargmann, 2011, Modeling of polycrystals using a gradient crystal plasticity theory that includes dissipative microstresses, Eur. J. Mech. A/Solids, 30, 719, 10.1016/j.euromechsol.2011.04.006 Bargmann, 2010, Modeling of polycrystals with gradient crystal plasticity: A comparison of strategies, Philos. Mag., 90, 1263, 10.1080/14786430903334332 Bargmann, 2011, An extended crystal plasticity model for latent hardening in polycrystals, Comput. Mech., 48, 631, 10.1007/s00466-011-0609-2 Bulatov, 2006, Dislocation multi-junctions and strain hardening, Nature, 440, 1174, 10.1038/nature04658 Conti, 2005, Dislocation microstructures and the effective behavior of single crystals, Arch. Rat. Mech. Anal., 176, 103, 10.1007/s00205-004-0353-2 Ekh, 2007, Gradient crystal plasticity as part of the computational modeling of polycrystals, Int. J. Numer. Meth. Eng., 72, 197, 10.1002/nme.2015 Ekh, 2011, Influence of grain boundary conditions on modeling of size-dependence in polycrystals, Acta Mech., 218, 103, 10.1007/s00707-010-0403-9 Evers, 2004, Non-local crystal plasticity model with intrinsic ssd and gnd effects, J. Mech. Phys. Solids, 52, 2379, 10.1016/j.jmps.2004.03.007 Fleck, 2001, A reformulation of strain gradient plasticity, J. Mech. Phys. Solids, 49, 2245, 10.1016/S0022-5096(01)00049-7 Gao, 2003, Geometrically necessary dislocation and size-dependent plasticity, Scripta Mater., 48, 113, 10.1016/S1359-6462(02)00329-9 Gurtin, 2000, On the plasticity of single crystals:free energy, microforces, plastic-strain gradients, J. Mech. Phys. Solids, 48, 989, 10.1016/S0022-5096(99)00059-9 Gurtin, 2002, A theory of viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids, 50, 5, 10.1016/S0022-5096(01)00104-1 Gurtin, 2008, A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation, J. Mech. Phys. Solids, 56, 640, 10.1016/j.jmps.2007.05.002 Gurtin, 2005, A theory of strain gradient plasticity for isotropic, plastically irrotational materials. Part II: Finite deformations, Int. J. Plasticity, 21, 2297, 10.1016/j.ijplas.2005.01.006 Gurtin, M.E., Reddy, B.D., 2014. Gradient single-crystal plasticity within a miseshill framework based on a new formulation of self- and latent-hardening. J. Mech. Phys. Solids, in press, http://dx.doi.org/10.1016/j.jmps.2014.01.002, 2014. Gurtin, 2007, Gradient single-crystal plasticity with free energy dependent on dislocation densities, J. Mech. Phys. Solids, 55, 1853, 10.1016/j.jmps.2007.02.006 Gurtin, 2010 Hall, 1951, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Lond. B, 64, 747, 10.1088/0370-1301/64/9/303 Henning, 2005, Local mechanical behavior and slip band formation within grains of thin sheets, Acta Mater., 53, 1285, 10.1016/j.actamat.2004.10.052 Hutchinson, 1970, Elastic-plastic behaviour of polycrystalline metals and composites, Proc. Roy. Soc. Lond. A, 319, 247, 10.1098/rspa.1970.0177 Klusemann, 2013, Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior, Comput. Mater. Sci., 80, 51, 10.1016/j.commatsci.2013.04.016 Klusemann, 2013, Modeling and simulation of deformation behavior, orientation gradient development and heterogeneous hardening in thin sheets with coarse texture, Int. J. Plasticity, 50, 109, 10.1016/j.ijplas.2013.04.004 Lele, 2008, A small-deformation strain-gradient theory for isotropic viscoplastic materials, Philos. Mag., 88, 3655, 10.1080/14786430802087031 Levkovitch, 2006, On the large-deformation- and continuum-based formulation of models for extended crystal plasticity, Int. J. Solids Struct., 43, 7246, 10.1016/j.ijsolstr.2006.05.010 Limkumnerd, 2008, Statistical approach to dislocation dynamics: From dislocation correlations to a multiple-slip ontinuum theory of plasticity, Phys. Rev. B, 77, 184111, 10.1103/PhysRevB.77.184111 Needleman, 2003, Preface to the viewpoint set on: geometrically necessary dislocations and size dependent plasticity, Scripta Mater., 48, 109, 10.1016/S1359-6462(02)00336-6 Niordson, 2010, Strain gradient effects on cyclic plasticity, J. Mech. Phys. Solids, 58, 542, 10.1016/j.jmps.2010.01.007 Nix, 1998, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids, 46, 411, 10.1016/S0022-5096(97)00086-0 Norton, 1929 Nye, 1953, Some geometric relations in dislocated crystals, Acta Metall., 1, 153, 10.1016/0001-6160(53)90054-6 Peirce, 1982, An analysis of nonuniform and localized deformation in ductile single crystals, Acta Metall., 30, 1087, 10.1016/0001-6160(82)90005-0 Petch, 1953, The cleavage strength of polycrystals, I, J. Iron Steel Inst., 174, 25 Povall, 2013, Finite element simulation of large-strain single-crystal viscoplasticity: an investigation of various hardening relations, Comput. Mater. Sci., 81, 386, 10.1016/j.commatsci.2013.08.043 Reddy, 2011, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: Single-crystal plasticity, Continuum Mech. Thermodyn., 23, 551, 10.1007/s00161-011-0195-8 Reddy, 2013, Some theoretical and computational aspects of single-crystal strain-gradient plasticity, Zeitsch. angew. Mathem. Mech. (ZAMM), 93, 844, 10.1002/zamm.201200101 Reddy, 2013, Variational formulations for single-crystal strain-gradient plasticity at large deformations, GAMM Mitteilungen, 36, 149, 10.1002/gamm.201310009 Shu, 1999, Strain gradient crystal plasticity: size-dependent deformation of bicrystals, J. Mech. Phys. Solids, 47, 297, 10.1016/S0022-5096(98)00081-7 Voyiadjis, 2009, Mechanics of strain gradient plasticity with particular reference to decomposition of the state variables into energetic and dissipative components, Int. J. Eng. Sci., 47, 1405, 10.1016/j.ijengsci.2009.05.013 Wulfinghoff, 2012, Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics, Proc. Royal Soc. A, 468, 2682, 10.1098/rspa.2012.0073 Yalcinkaya, 2012, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning, Int. J. Solids Struct., 49, 2625, 10.1016/j.ijsolstr.2012.05.029