A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans

Nature Chemical Biology - Tập 6 Số 7 - Trang 549-557 - 2010
Andrew R. Burns1, Iain M. Wallace1, Jan Wildenhain2,3, Mike Tyers2,3, Guri Giaever1, Gary D. Bader1, Corey Nislow1, Sean R. Cutler4, Peter J. Roy1
1Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
2Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
3Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
4Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Burns, A.R. et al. High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nat. Protoc. 1, 1906–1914 (2006).

Kwok, T.C.Y. et al. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 441, 91–95 (2006).

Petrascheck, M., Ye, X. & Buck, L.B. An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450, 553–556 (2007).

Kokel, D., Li, Y., Qin, J. & Xue, D. The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans. Nat. Chem. Biol. 2, 338–345 (2006).

Kwok, T.C. et al. A genetic screen for dihydropyridine (DHP)-resistant worms reveals new residues required for DHP-blockage of mammalian calcium channels. PLoS Genet. 4, e1000067 (2008).

Jones, A.K., Buckingham, S.D. & Sattelle, D.B. Chemistry-to-gene screens in Caenorhabditis elegans. Nat. Rev. Drug Discov. 4, 321–330 (2005).

Kaminsky, R. et al. A new class of anthelmintics effective against drug-resistant nematodes. Nature 452, 176–180 (2008).

Kaletta, T. & Hengartner, M.O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5, 387–398 (2006).

Broeks, A., Janssen, H.W., Calafat, J. & Plasterk, R.H. A P-glycoprotein protects Caenorhabditis elegans against natural toxins. EMBO J. 14, 1858–1866 (1995).

Rand, J.B. & Johnson, C.D. Genetic pharmacology: interactions between drugs and gene products in Caenorhabditis elegans. in Methods in Cell Biology, 48 (eds. Epstein, H.F. & Shakes, D.C.) 187–204 (Academic, San Diego, 1995).

Choy, R.K. & Thomas, J.H. Fluoxetine-resistant mutants in C. elegans define a novel family of transmembrane proteins. Mol. Cell 4, 143–152 (1999).

Cox, G.N., Kusch, M. & Edgar, R.S. Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J. Cell Biol. 90, 7–17 (1981).

Avery, L. & Shtonda, B.B. Food transport in the C. elegans pharynx. J. Exp. Biol. 206, 2441–2457 (2003).

Lindblom, T.H. & Dodd, A.K. Xenobiotic detoxification in the nematode Caenorhabditis elegans. J. Exp. Zool. A. Comp. Exp. Biol. 305, 720–730 (2006).

Jospin, M., Jacquemond, V., Mariol, M.C., Segalat, L. & Allard, B. The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. J. Cell Biol. 159, 337–348 (2002).

Franks, C.J. et al. Ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of Caenorhabditis elegans. J. Neurophysiol. 87, 954–961 (2002).

Irwin, J.J. & Shoichet, B.K. ZINC—a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

Herre, S. & Pragst, F. Shift of the high-performance liquid chromatographic retention times of metabolites in relation to the original drug on an RP8 column with acidic mobile phase. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 692, 111–126 (1997).

Herzler, M., Herre, S. & Pragst, F. Selectivity of substance identification by HPLC–DAD in toxicological analysis using a UV spectra library of 2682 compounds. J. Anal. Toxicol. 27, 233–242 (2003).

Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

Kocisko, D.A. et al. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J. Virol. 77, 10288–10294 (2003).

Eddershaw, P. & Dickins, M. Phase I metabolism. in A Handbook of Bioanalysis and Drug Metabolism (ed. Evans, G.) 208–221 (CRC Press, Boca Raton, Florida, USA, 2004).

Manchee, G., Dickins, M. & Pickup, E. Phase II enzymes. in A Handbook of Bioanalysis and Drug Metabolism (ed. Evans, G.) 222–243 (CRC Press, Boca Raton, Florida, USA, 2004).

Xia, X., Maliski, E.G., Gallant, P. & Rogers, D. Classification of kinase inhibitors using a Bayesian model. J. Med. Chem. 47, 4463–4470 (2004).

Rogers, D., Brown, R.D. & Hahn, M. Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J. Biomol. Screen. 10, 682–686 (2005).

Durant, J.L., Leland, B.A., Henry, D.R. & Nourse, J.G. Reoptimization of MDL keys for use in drug discovery. J. Chem. Inf. Comput. Sci. 42, 1273–1280 (2002).

Kerwar, S.S. Pharmacologic properties of fenbufen. Am. J. Med. 75, 62–69 (1983).

Flower, D.R. On the properties of bit string-based measures of chemical similarity. J. Chem. Inf. Comput. Sci. 38, 379–386 (1998).

Hert, J., Irwin, J.J., Laggner, C., Keiser, M.J. & Shoichet, B.K. Quantifying biogenic bias in screening libraries. Nat. Chem. Biol. 5, 479–483 (2009).

Bemis, G.W. & Murcko, M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).

Shelat, A.A. & Guy, R.K. Scaffold composition and biological relevance of screening libraries. Nat. Chem. Biol. 3, 442–446 (2007).

Hoon, S. et al. An integrated platform of genomic assays reveals small-molecule bioactivities. Nat. Chem. Biol. 4, 498–506 (2008).

Young, D.W. et al. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat. Chem. Biol. 4, 59–68 (2008).

Horton, D.A., Bourne, G.T. & Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev. 103, 893–930 (2003).

Klekota, J. & Roth, F.P. Chemical substructures that enrich for biological activity. Bioinformatics 24, 2518–2525 (2008).

Evans, B.E. et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 31, 2235–2246 (1988).

Mason, J.S. et al. New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures. J. Med. Chem. 42, 3251–3264 (1999).

Hajduk, P.J., Bures, M., Praestgaard, J. & Fesik, S.W. Privileged molecules for protein binding identified from NMR-based screening. J. Med. Chem. 43, 3443–3447 (2000).

Chen, Y. & Shoichet, B.K. Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat. Chem. Biol. 5, 358–364 (2009).

Garzon-Aburbeh, A., Poupaert, J.H., Claesen, M. & Dumont, P. A lymphotropic prodrug of L-dopa: synthesis, pharmacological properties, and pharmacokinetic behavior of 1,3-dihexadecanoyl-2-[(S)-2-amino-3-(3,4-dihydroxyphenyl)prop anoyl]propane-1,2,3-triol. J. Med. Chem. 29, 687–691 (1986).

Inturrisi, C.E. et al. Evidence from opiate binding studies that heroin acts through its metabolites. Life Sci. 33 Suppl 1: 773–776 (1983).

Hou, B., Lim, E.K., Higgins, G.S. & Bowles, D.J. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J. Biol. Chem. 279, 47822–47832 (2004).

Cline, M.S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366–2382 (2007).