Characterization of depth-related microbial community structure in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rDNA and reversely transcribed 16S rRNA fragments

FEMS Microbiology Ecology - Tập 46 - Trang 147-157 - 2003
Yoshikazu Koizumi1, Hisaya Kojima1, Manabu Fukui1
1Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

Tài liệu tham khảo

Sahm, 1999, Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment, Environ. Microbiol., 1, 65, 10.1046/j.1462-2920.1999.00007.x Ravenschlag, 2000, Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments, Appl. Environ. Microbiol., 66, 3592, 10.1128/AEM.66.8.3592-3602.2000 Koizumi, 2003, Vertical distributions of sulfate-reducing bacteria and methane-producing archaea quantified by oligonucleotide probe hybridization in the profundal sediment of a mesotrophic lake, FEMS Microbiol. Ecol., 44, 101, 10.1016/S0168-6496(02)00463-4 Urakawa, 2000, Characterization of depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches and quinone profiling, Environ. Microbiol., 2, 542, 10.1046/j.1462-2920.2000.00137.x Demaneche, 2001, Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA, Appl. Environ. Microbiol., 67, 293, 10.1128/AEM.67.1.293-299.2001 Novitsky, 1987, Microbial growth rates and biomass production in a marine sediment: evidence for a very active but mostly nongrowing community, Appl. Environ. Microbiol., 53, 2368, 10.1128/AEM.53.10.2368-2372.1987 Nomura, 1984, Regulation of the synthesis of ribosomal components, Annu. Rev. Biochem., 53, 75, 10.1146/annurev.bi.53.070184.000451 Novitsky, 1986, Degradation of dead microbial biomass in a marine sediment, Appl. Environ. Microbiol., 52, 504, 10.1128/AEM.52.3.504-509.1986 Schmid, 2001, 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection, Environ. Microbiol., 3, 450, 10.1046/j.1462-2920.2001.00211.x Fukui, 1996, High survival efficiency and ribosomal RNA decaying pattern of Desulfobacter latus, a highly specific acetate-utilizing organism, during starvation, FEMS Microbiol. Ecol., 19, 17, 10.1111/j.1574-6941.1996.tb00194.x Flärdh, 1992, Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956, J. Bacteriol., 174, 6780, 10.1128/jb.174.21.6780-6788.1992 Miskin, 1999, Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR, Microbiology, 145, 1977, 10.1099/13500872-145-8-1977 Nogales, 2001, Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil, Appl. Environ. Microbiol., 67, 1874, 10.1128/AEM.67.4.1874-1884.2001 Torsvik, 2002, Prokaryotic diversity – magnitude, dynamics, and controlling factors, Science, 296, 1064, 10.1126/science.1071698 Schallenberg, 1989, Solutions to problems in enumerating sediment bacteria by direct count, Appl. Environ. Microbiol., 55, 1214, 10.1128/AEM.55.5.1214-1219.1989 Bulleid, 1977, An improved method for the extraction of adenosine triphosphate from marine sediment and seawater, Limnol. Oceanogr., 22, 174 Stooky, 1970, Ferrozine: a new spectrophotometric reagent for iron, Anal. Chem., 42, 779, 10.1021/ac60289a016 Fukui, 1990, Seasonal variations of population density and activity of sulfate-reducing bacteria in offshore and reed sediments of a hypertrophic freshwater lake, Jpn. J. Limnol., 51, 63, 10.3739/rikusui.51.63 Purdy, 1996, Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method, Appl. Environ. Microbiol., 62, 3905, 10.1128/AEM.62.10.3905-3907.1996 Amann, 1990, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol., 56, 1919, 10.1128/AEM.56.6.1919-1925.1990 Amann, 1992, Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms, Appl. Environ. Microbiol., 58, 614, 10.1128/AEM.58.2.614-623.1992 Ishii, 2001, Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR, Appl. Environ. Microbiol., 67, 3753, 10.1128/AEM.67.8.3753-3755.2001 http://www.mikro.biologie.tu-muenchen.de/pub/ARB Stahl, 1988, Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology, Appl. Environ. Microbiol., 54, 1079, 10.1128/AEM.54.5.1079-1084.1988 Hovanec, 1996, Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria, Appl. Environ. Microbiol., 62, 2888, 10.1128/AEM.62.8.2888-2896.1996 Koizumi, 2002, Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology, Appl. Environ. Microbiol., 68, 3215, 10.1128/AEM.68.7.3215-3225.2002 Casamayor, 2002, Microheterogeneity in 16S ribosomal DNA-defined bacterial populations from a stratified planktonic environment is related to temporal changes and to ecological adaptations, Appl. Environ. Microbiol., 68, 1706, 10.1128/AEM.68.4.1706-1714.2002 Llobet-Brossa, 1998, Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization, Appl. Environ. Microbiol., 64, 2691, 10.1128/AEM.64.7.2691-2696.1998 Delbes, 2001, Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem, FEMS Microbiol. Ecol., 35, 19, 10.1016/S0168-6496(00)00107-0 Zoetendal, 1998, Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria, Appl. Environ. Microbiol., 64, 3854, 10.1128/AEM.64.10.3854-3859.1998 Torsvik, 1998, Novel techniques for analysing microbial diversity in natural and perturbed environments, J. Biotechnol., 64, 53, 10.1016/S0168-1656(98)00103-5 Smit, 2001, Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods, Appl. Environ. Microbiol., 67, 2284, 10.1128/AEM.67.5.2284-2291.2001 Eichner, 1999, Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community, Appl. Environ. Microbiol., 65, 102, 10.1128/AEM.65.1.102-109.1999 Bakermans, 2002, Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters, Microb. Ecol., 44, 95 Buchholz Cleven, 1997, Screening for genetic deversity of isolates of anaerobic Fe (II)-oxidizing bacteria using DGGE and whole-cell hybridization, Syst. Appl. Microbiol., 20, 301, 10.1016/S0723-2020(97)80077-X Reysenbach, 1992, Differential amplification of rRNA genes by polymerase chain reaction, Appl. Environ. Microbiol., 58, 3417, 10.1128/AEM.58.10.3417-3418.1992 Bancroft, 1975, The extraction and measurement of adenosine triphosphate from marine sediments, Limnol. Oceanogr., 21, 473, 10.4319/lo.1976.21.3.0473 Haglund, 2002, Large differences in the fraction of active bacteria in plankton, sediments, and biofilm, Microb. Ecol., 43, 232, 10.1007/s00248-002-2005-0 Ehrich, 1995, A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship, Arch. Microbiol., 164, 16, 10.1007/BF02568729 Daims, 2000, Novel nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology, Water Sci. Technol., 41, 85, 10.2166/wst.2000.0430 Juretschko, 1998, Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations, Appl. Environ. Microbiol., 64, 3042, 10.1128/AEM.64.8.3042-3051.1998 Bartosch, 2002, Immunological detection of Nitrospira-like bacteria in various soils, Microb. Ecol., 43, 26, 10.1007/s00248-001-0037-5 Stein, 2001, Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments, Environ. Microbiol., 3, 10, 10.1046/j.1462-2920.2001.00154.x Holmes, 2001, Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia, Environ. Microbiol., 3, 256, 10.1046/j.1462-2920.2001.00187.x Brofft, 2002, Recovery of novel bacterial diversity from a forested wetland impacted by reject coal, Environ. Microbiol., 4, 764, 10.1046/j.1462-2920.2002.00337.x Sørensen, 1981, Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment, Appl. Environ. Microbiol., 42, 5, 10.1128/AEM.42.1.5-11.1981 Oda, 2000, Influence of growth rate and starvation on fluorescent in situ hybridization of Rhodopseudomonas palustris, FEMS Microbiol. Ecol., 32, 205, 10.1111/j.1574-6941.2000.tb00713.x Scheid, 2001, Structure and diversity of Gram-negative sulfate-reducing bacteria on rice roots, FEMS Microbiol. Ecol., 36, 175, 10.1111/j.1574-6941.2001.tb00838.x Ludwig, 1997, Detection and in situ identification of representatives of a widely distributed new bacterial phylum, FEMS Microbiol. Ecol., 153, 181, 10.1111/j.1574-6968.1997.tb10480.x MacNaughton, 1999, Microbial population changes during bioremediation of an experimental oil spill, Appl. Environ. Microbiol., 65, 3566, 10.1128/AEM.65.8.3566-3574.1999