A Systemic DFT Study on Several 5d-Electron Element Dimers: Hf2, Ta2, Re2, W2, and Hg2

Journal of Cluster Science - Tập 21 - Trang 619-636 - 2010
Xiyuan Sun1, Jiguang Du1, Pengcheng Zhang2, Gang Jiang1
1Institutes of Atomic and Molecular Physics, Sichuan University, Chengdu, China
2State Key Laboratory of Surface Physics and Chemistry, Mianyang, China

Tóm tắt

Eleven kinds of density functionals in conjunction with three different basis sets are employed to investigate the homonuclear 5d-electron dimers: Hf2, Ta2, Re2, W2 and Hg2. The computed bond lengths, vibrational frequencies and dissociation energies of these molecules are used to compare with available experimental data to find the appropriate combination of functional and basis set. The different functionals and basis sets favor different ground electronic state for Hf2 and Re2 molecules, indicating that these two dimers are sensitive to the functionals used. The molecular properties of Hg2 dimer depend strongly on both functionals and basis sets used. It is found that the BP86 and PBEPBE functionals are generally successful in describing the 5d-electron dimers. For the ground states of these dimers, the bonding patterns are determined by natural bond orbital (NBO) analysis. Natural electron configurations show that the 6s and 5d orbitals in the bonding atoms hybrid with each other for the studied dimers except for Hg2.

Tài liệu tham khảo

M. D. Morse (1986). Chem. Rev. 86, 1049. J. R. Lombardi and B. Davis (2002). Chem. Rev. 102, 2431. J. G. Du, X. Y. Sun, and H. Y. Wang (2008). Int. J. Quantum Chem. 108, 1505. C. J. Barden, J. C. Rienstra-Kiracofe, and H. F. Schaefer III (2000). J. Chem. Phys. 113, 690. S. Yanagisawa, T. Tsuneda, and K. Hirao (2000). J. Chem. Phys. 112, 545. G. L. Cutsev and C. W. Bauschlicher Jr. (2003). J. Phys. Chem. A. 107, 4755. Z. J. Wu (2004). Chem. Phys. Lett. 383, 251. Z. J. Wu, B. Han, Z. W. Dai, and P. C. Jin (2005). Chem. Phys. Lett. 403, 367. J. P. Foster and F. Weinhold (1980). J. Am. Chem. Soc. 102, 7211. A. E. Reed and F. Weinhold (1983). J. Chem. Phys. 78, 4066. A. E. Reed and F. Weinhold (1983). J. Chem. Phys. 1736. A. E. Reed, R. B. Weinstock, and F. Weinhold (1985). J. Chem. Phys. 83, 735. J. E. Carpenter and F. Weinhold (1988). J. Mol. Struct. (THEOCHEM) 169, 41. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899. A. D. Becke (1993). J. Chem. Phys. 98, 5648. L. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B. 37, 785. J. P. Perdew (1986). Phys. Rev. B. 33, 8822. J. P. Perdew, K. Burke, and M. Ernzerhof (1997). Phys. Rev. Lett. 78, 1396. A. D. Becke (1988). Phys. Rev. A. 38, 3098. J. P. Perdew and Y. Wang (1992). Phys. Rev. B. 45, 13244. P. M. W. Gill (1996). Mol. Phys. 89, 433. C. Adamo and V. Barone (1998). J. Chem. Phys. 108, 664. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865. N. C. Handy and A. J. Cohen (2001). Mol. Phys. 99, 403. J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria (2003). Phys. Rev. Lett. 91, 146401. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270. W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299. W. Stevens, H. Basch, and J. Krauss (1984). J. Chem. Phys. 81, 6026. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien (1992). Can. J. Chem. 70, 612. T. R. Cundari and W. J. Stevens (1993). J. Chem. Phys. 98, 5555. D. Andvae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss (1990). Theor. Chim. Acta. 77, 123. J. M. L. Martin and A. Sundermann (2001). J. Chem. Phys. 114, 3408. F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297. B. Delley (1990). J. Chem. Phys. 92, 508. B. Delley (2000). J. Chem. Phys. 113, 7756, (Dmol3 is available as part in Materials Studio). M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople Gaussian 03, Revision B 02 (Gaussian, Inc., Pittsburgh PA, 2003). Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay (1993). J. Phys. Chem. 97, 9263. J. L. Jules and J. R. Lombardi (2003). J. Phys. Chem. A. 107, 1268. C. W. Bauschlicher Jr. (2008). Chem. Phys. Lett. 462, 183. Z. Hu, B. Shen, J. R. Lombardi, and D. M. Lindsay (1992). J. Chem. Phys. 96, 8757. M. W. Heaven, G. M. Stewart, M. A. Buntine, and G. F. Metha (2000). J. Phys. Chem. A. 104, 3308. W. Fa, C. F. Luo, and J. M. Dong (2006). J. Chem. Phys. 125, 114305. Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay (1992). J. Chem. Phys. 97, 8811. Z. J. Wu (2003). Chem. Phys. Lett. 370, 510. J. G. Du, X. Y. Sun, D. Q. Meng, P. C. Zhang, and G. Jiang (2009). J. Chem. Phys. 131, 044313. H. S. Cheng and L. S. Wang (1996). Phys. Rev. Lett. 77, 51. Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay (1994). J. Chem. Phys. 101, 95. D. G. Leopold, T. M. Miller, and W. C. Lineberger (1986). J. Am. Chem. Soc. 108, 178. R. D. Van Zee, S. C. Blankespoor, and T. S. Zwier (1988). J. Chem. Phys. 88, 4650. J. Koperskl, J. B. Atkinson, and L. Krause (1994). Chem. Phys. Lett. 219, 161. K. Hilpert (1982). J. Chem. Phys. 77, 1425. D. Figgen, K. A. Peterson, M. Dolg, and H. Stoll (2009). J. Chem. Phys. 130, 164108.