Addition of h-BN for enhanced machinability and high mechanical strength of AlN/Mo composites

Ceramics International - Tập 46 - Trang 20097-20104 - 2020
Yunzi Li1, Fei Chen1, Xiaoyu Li1, Qiang Shen1, Lianmeng Zhang1
1State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China

Tài liệu tham khảo

Fahrenholtz, 2017, Ultra-high temperature ceramics: materials for extreme environments, Scripta Mater., 129, 94, 10.1016/j.scriptamat.2016.10.018 Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Padture, 2016, Advanced structural ceramics in aerospace propulsion, Nat. Mater., 15, 804, 10.1038/nmat4687 Indacochea, 2001, High-temperature oxidation and corrosion of structural materials in molten chlorides, Oxid. Metals, 55, 1, 10.1023/A:1010333407304 Brostow, 2010, Brittleness of materials: implications for composites and a relation to impact strength, J. Mater. Sci., 45, 242, 10.1007/s10853-009-3926-5 Hidnert, 1924 Yim, 1974, Thermal expansion of AlN, sapphire, and silicon, J. Appl. Phys., 45, 1456, 10.1063/1.1663432 Lefort, 1994, Compatibility between molybdenum and aluminium nitride, J. Eur. Ceram. Soc., 13, 329, 10.1016/0955-2219(94)90007-8 Khan, 1996, Aluminium nitride—molybdenum ceramic matrix composites: characterization of ceramic—metal interface, J. Eur. Ceram. Soc., 16, 739, 10.1016/0955-2219(95)00203-0 Khan, 1997, Aluminium nitride-molybdenum ceramic matrix composites. Influence of molybdenum addition on electrical, mechanical and thermal properties, J. Eur. Ceram. Soc., 17, 1885, 10.1016/S0955-2219(97)00071-X Zhang, 2016, (AlN)xMo1 - x (x = 0.5) composite fabricated by spark plasma sintering (SPS), Int. J. Refract. Metals Hard Mater., 54, 378, 10.1016/j.ijrmhm.2015.09.006 Taruta, 2006, Preparation and mechanical properties of machinable alumina/mica composites, J. Eur. Ceram. Soc., 26, 1687, 10.1016/j.jeurceramsoc.2005.03.258 Wang, 2004, Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites, J. Am. Ceram. Soc., 87, 565, 10.1111/j.1551-2916.2004.00565.x Li, 2010, SiC/C machinable ceramics surface hardening by silicon infiltration, Scripta Mater., 63, 1177, 10.1016/j.scriptamat.2010.08.031 Gong, 2006, Pressureless sintering of machinable Al2O3/LaPO 4 composites in N2 atmosphere, Ceram. Int., 32, 349, 10.1016/j.ceramint.2005.03.002 Li, 2005, Fabrication and properties of machinable 3Y-ZrO2/BN nanocomposites, Mater. Sci. Eng., 397, 35, 10.1016/j.msea.2005.01.038 Jin, 2008, Ceramic Processing Research Corrosion behavior and creepage discharze character for machinable AlN/h-BN ceramic composites, J. Ceram. Process. Res., 9, 526 Hwang, 2006, Microstructure and mechanical properties of AlN–hBN based machinable ceramics prepared by pressureless sintering, J. Eur. Ceram. Soc., 27, 1425 Evans, 1976, Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 59, 371, 10.1111/j.1151-2916.1976.tb10991.x Watari, 1999, Effective sintering aids for low-temperature sintering of AlN ceramics, J. Mater. Res., 14, 1409, 10.1557/JMR.1999.0191 Qiao, 2003, Effect of Y2O3 on low temperature sintering and thermal conductivity of AlN ceramics, J. Eur. Ceram. Soc., 23, 61, 10.1016/S0955-2219(02)00079-1 Sekar, 2016, Structural stability of ultra-incompressible Mo2B: a combined experimental and theoretical study, J. Alloys Compd., 654, 554, 10.1016/j.jallcom.2015.09.128 Park, 2017, Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction, Angew. Chem. Int. Ed., 56, 5575, 10.1002/anie.201611756 Jagtap, 2005, Characterization of nanocrystalline anatase titania: an in situ HTXRD study, Thermochim. Acta, 427, 37, 10.1016/j.tca.2004.08.011 Kanezaki, 1998, Thermal behavior of the hydrotalcite-like layered structure of Mg and Al-layered double hydroxides with interlayer carbonate by means of in situ powder HTXRD and DTA/TG, Solid State Ionics, 106, 279, 10.1016/S0167-2738(97)00494-3 Akca, 2017, Characterization of borided pure molybdenum under controlled atmosphere, Protect. Met. Phys. Chem. Surface, 53, 511, 10.1134/S2070205117030030 Wang, 2009, Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process, Int. J. Refract. Metals Hard Mater., 27, 1024, 10.1016/j.ijrmhm.2009.06.003 Lu, 2000, Preparation, sintering behavior, and microstructural studies of A12O3/Mo composites from boehmite-coated Mo powders, Mater. Res. Bull., 35, 2387, 10.1016/S0025-5408(00)00454-2 Brewer, 1955, The thermodynamic stability of refractory borides, J. Electrochem. Soc., 102, 399, 10.1149/1.2430108 Çamurlu, 2011, Preparation of single phase molybdenum boride, J. Alloys Compd., 509, 5431, 10.1016/j.jallcom.2011.02.083 Borisova, 1975, Reactions of boron and aluminum nitrides, and materials based on them, with refractory metals, Sov. Powder Metall. Met. Ceram., 14, 822, 10.1007/BF00790818 Rödel, 1992, Interaction between crack deflection and crack bridging, J. Eur. Ceram. Soc., 10, 143, 10.1016/0955-2219(92)90027-B Bannikov, 2010, Elastic properties of antiperovskite-type Ni-rich nitrides MNNi3 (M=Zn, Cd, Mg, Al, Ga, In, Sn, Sb, Pd, Cu, Ag and Pt) as predicted from first-principles calculations, Phys. B, 405, 4615, 10.1016/j.physb.2010.08.046 Zhang, 2010, Structural modifications and mechanical properties of molybdenum borides from first principles, J. Phys. Chem. C, 114, 6722, 10.1021/jp100225c Escamilla, 2016, First-principles study of the structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure, J. Mol. Struct., 1125, 350, 10.1016/j.molstruc.2016.07.004