Long-Term Integration of a Global Non-Hydrostatic Atmospheric Model on an Aqua Planet
Tóm tắt
A global non-hydrostatic atmospheric model, i.e., GRAPES_YY (Global/Regional Assimilation and Prediction System on the Yin–Yang grid), with a semi-implicit semi-Lagrangian (SISL) dynamical core developed on the Yin–Yang grid was coupled with the physical parameterization package of the operational version of GRAPES. A 3.5-yr integration was carried out on an aqua planet to assess the numerical performance of this non-hydrostatic model relative to other models. Specific aspects of precipitation and general circulation under two different sea surface temperature (SST) conditions (CONTROL and FLAT) were analyzed. The CONTROL SST peaked at the equator. The FLAT SST had its maximum gradient at about 20° latitude, giving a broad equatorial SST maximum in the tropics and flat profile approaching the equator. The tropical precipitation showed different propagation features in the CONTROL and FLAT simulations. The CONTROL showed tropical precipitation bands moving eastward with some envelopes of westward convective-scale disturbance. Less organized westward-propagating rainfall cells and bands were seen in the FLAT and the propagation of the tropical wave varied with the SST gradient. The Inter Tropical Convergence Zone (ITCZ), Hadley cell, and westerly jet core were weaker and more poleward as the SST profile flattened from the CONTROL to FLAT. The climatological structures simulated by GRAPES_YY, such as the distribution of precipitation and the large-scale circulation, fell within the bounds from other models. The stronger ITCZ precipitation, accompanied with stronger Hadley cells and convective heating in the CONTROL simulation, may be summed up as a result of stronger parameterized convection and the non-hydrostatic effects in GRAPES_YY. In addition, mechanism of the zonal mean circulation maintaining is analyzed for the different SST patterns referring the transient eddy flux.
Tài liệu tham khảo
Abiodun, B. J., J. M. Prusa, and W. J. Gutowski Jr, 2008: Implementation of a non-hydrostatic, adaptive-grid dynamics core in CAM3. Part I: Comparison of dynamics cores in aquaplanet simulations. Climate Dyn., 31, 795–810, doi: 10.1007/s00382-008-0381-y.
Ait-Chaalal, F., and T. Schneider, 2015: Why eddy momentum fluxes are concentrated in the upper troposphere. J. Atmos. Sci., 72, 1585–1604, doi: 10.1175/JAS-D-14-0243.1.
Allen, T., and M. Zerroukat, 2016: A deep non-hydrostatic compressible atmospheric model on a Yin–Yang grid. J. Comput. Phys., 319, 44–60, doi: 10.1016/j.jcp.2016.05.022.
Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701, doi: 10.1175/1520-0469(1974)031 <0674:IOACCE>2.0.CO;2.
Arakawa, A., and V. R. Lamb, 1997: Computational design of the basic dynamical processes of the UCLA General Circulation Model. Methods Comput. Phys. Adv. Res. Appl., 17, 173–265, doi: 10.1016/B978-0-12-460817-7.50009-4.
Baba, Y., K. Takahashi, and T. Sugimura, 2010: Dynamical core of an atmospheric general circulation model on a Yin–Yang grid. Mon. Wea. Rev., 138, 3988–4005, doi: 10.1175/2010MWR3375.1.
Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270, doi: 10.1002/qj.49712152203.
Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the Aqua-Planet Experiment. J. Meteor. Soc. Japan, 91, 1–15, doi: 10.2151/jmsj.2013-A01.
Blackburn, M., D. L. Williamson, K. Nakajima, et al., 2013: The Aqua-Planet Experiment (APE): CONTROL SST simulation. J. Meteor. Soc. Japan, 91, 17–56, doi: 10.2151/jmsj.2013-A02.
Charney, J. G., and N. A. Phillips, 1953: Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J. Meteor., 10, 71–99, doi: 10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2.
Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci. Bull., 53, 3433–3445, doi: 10.1007/s11434-008-0494-z.
Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.
Dennis, J., A. Fournier, W. F. Spotz, et al., 2005: High-resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. Int. J. High Perform. Comput. Appl., 19, 225–235, doi: 10.1177/1094342005056108.
Han, J., and H. L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520–533, doi: 10.1175/WAF-D-10-05038.1.
Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515–533, doi: 10.1175/1520-0469(1980)037<0515:NASCIA> 2.0.CO;2.
Hess, P. G., D. S. Battisti, and P. J. Rasch, 1993: Maintenance of the intertropical convergence zones and the large-scale tropical circulation on a water-covered earth. J. Atmos. Sci., 50, 691–713, doi: 10.1175/1520-0469(1993)050<0691:MOTICZ> 2.0.CO;2.
Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339, doi: 10.1175/1520-0493(1996)124<2322: NBLVDI>2.0.CO;2.
Hu, Z. J., X. F. Lou, S. W. Bao, et al., 1998: A simplified explicit scheme of phase-mixed cloud and precipitation. Quart. J. Appl. Meteor., 9, 257–264. (in Chinese)
Iacono, M. J., J. S. Delamere, E. J. Mlawer, et al., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, D13103, doi: 10.1029/2008JD009944.
Jablonowski, C., P. H. Lauritzen., R. D. Nair, et al., 2008: Idealized test cases for the dynamical cores of atmospheric general circulation models: A proposal for the NCAR ASP 2008 summer colloquium. [Available online at https://doi.org/esse.engin.umich.edu/admg/publications.php]
Kageyama, A., and T. Sato, 2004: “Yin–Yang grid”: An overset grid in spherical geometry. Geochem. Geophys. Geosyst., 5, Q09005, doi: 10.1029/2004GC000734.
Li, X. H., X. D. Peng, and X. L. Li, 2015: An improved dynamic core for a non-hydrostatic model system on the Yin–Yang grid. Adv. Atmos. Sci., 32, 648–658, doi: 10.1007/s00376-014-4120-5.
Li, X. L., D. H. Chen, X. D. Peng, et al., 2006: Implementation of the semi-lagrangian advection scheme on a quasi-uniform overset grid on a sphere. Adv. Atmos. Sci., 23, 792–801, doi: 10.1007/s00376-006-0792-9.
Li, X. L., D. H. Chen, X. D. Peng, et al., 2008: A multimoment finite-volume shallow-water model on the Yin–Yang overset spherical grid. Mon. Wea. Rev., 136, 3066–3086, doi: 10.1175/2007MWR2206.1.
Liang, X. Z., and W. C. Wang, 1996: Atmospheric ozone climatology for use in General Circulation Models. PCMDI Report No. 43: UCRL-MI-125650; 25 pp. [Accessible online at pcmdi.llnl.gov/mips/amip/AMIP2EXPDSN/OZONE/OZONE2/o3wangdoc.html
Lien, G. Y., E. Kalnay, T. Miyoshi, et al., 2016: Statistical properties of global precipitation in the NCEP GFS model and TMPA observations for data assimilation. Mon. Wea. Rev., 144, 663–679, doi: 10.1175/MWR-D-15-0150.1.
Liu, K., Q. Y. Chen, and J. Sun, 2015: Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J. Meteor. Res., 29, 806–882, doi: 10.1007/s13351-015-5043-5.
Liu, Q. J., Z. J. Hu, and X. J. Zhou, 2003: Explicit cloud schemes of HLAFS and simulation of heavy rainfall and clouds. Part I: Explicit cloud schemes. J. Appl. Meteor. Sci., 14, 60–67, doi: 10.3969/j.issn.1001-7313.2003.z1.008. (in Chinese)
Liu, Y. M., and Y. H. Ding, 2002: Modified mass flux cumulus convective parameterization scheme and its simulation experiment. Part I: Mass flux scheme and its simulation of the 1991 flood event. Acta Meteor. Sinica, 16, 37–49.
Lock, A. P., A. R. Brown, M. R. Bush, et al., 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187–3199, doi:1 0.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.
Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187–202, doi: 10.1007/BF00117978.
Ma, Z. S., Q. J. Liu., C. F. Zhao, et al., 2018: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst., 10, 652–667, doi: 10.1002/2017MS001234.
Medeiros, B., and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385–399, doi: 10.1007/s00382-009-0694-5.
Medeiros, B., B. Stevens, and S. Bony, 2015: Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Climate Dyn., 44, 1957–1977, doi: 10.1007/s00382-014-2138-0.
Medeiros, B., D. L. Williamson, and J. G. Olson, 2016: Reference aquaplanet climate in the Community Atmosphere Model, Version 5. J. Adv. Model. Earth Syst., 8, 406–424, doi: 10.1002/2015MS000593.
Mishra, S. K., M. A. Taylor, R. D. Nair, et al., 2011: Evaluation of the HOMME dynamical core in the aquaplanet configuration of NCAR CAM4: Rainfall. J. Climate, 24, 4037–4055, doi: 10.1175/2011JCLI3860.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, doi: 10.1029/97JD00237.
Nasuno, T., and M. Satoh, 2011: Properties of precipitation and incloud vertical motion in a global nonhydrostatic aquaplanet experiment. J. Meteor. Soc. Japan, 89, 413–439, doi: 10.2151/jmsj.2011-502.
Nasuno, T., H. Tomita, S. Iga, et al., 2008: Convectively coupled equatorial waves simulated on an aquaplanet in a global nonhydrostatic experiment. J. Atmos. Sci., 65, 1246–1265, doi: 10.1175/2007JAS2395.1.
Neale, R. B., and B. J. Hoskins, 2000a: A standard test for AGCMs including their physical parametrizations. I: The proposal. Atmos. Sci. Lett., 1, 101–107, doi: 10.1006/asle. 2000.0022.
Neale, R. B., and B. J. Hoskins, 2000b: A standard test for AGCMs including their physical parametrizations. II: Results for the Met Office model. Atmos. Sci. Lett., 1, 108–114, doi: 10.1006/asle.2000.0024.
Niu, Y. J., X. D. Peng, and G. Z. Fan, 2017: Impact of the three-dimensional Coriolis force in GRAPES model. Acta. Meteor. Sinica, 76, 473–484, doi: 10.11676/qxxb2018.003. (in Chinese)
Pan, H. L., and W. S. Wu, 1995: Implementing a mass flux convection parameterization package for the NMC Medium-Range Forecast model. NMC Office Note 409, 40 pp
Qaddouri, A., and V. Lee, 2011: The Canadian global environmental multiscale model on the Yin–Yang grid system. Quart. J. Roy. Meteor. Soc., 137, 1913–1926, doi: 10.1002/qj.873.
Qaddouri, A., L. Laayouni, L. Loisel, et al., 2008: Optimized Schwarz methods with an overset grid for the shallow-water equations: Preliminary results. Appl. Numer. Math., 58, 459–471, doi: 10.1016/j.apnum.2007.01.015.
Qian, J., F. H. M. Semazzi, and J. S. Scroggs, 1998: A global nonhydrostatic semi-lagrangian atmospheric model with orography. Mon. Wea. Rev., 126, 747–771, doi: 10.1175/1520-0493(1998)126<0747:AGNSLA>2.0.CO;2.
Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, doi: 10.1029/2002JD002670.
Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136–144, doi: 10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2.
Sadourny, R., A. Arakawa, and Y. Mintz, 1968: Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Mon. Wea. Rev., 96, 351–356, doi: 10.1175/1520-0493(1968)096<0351:IOTNBV> 2.0.CO;2.
Semazzi, F. H. M., J. H. Qian, and J. S. Scroggs, 1995: A global nonhydrostatic semi-lagrangian atmospheric model without orography. Mon. Wea. Rev., 123, 2534–2550, doi: 10.1175/1520-0493(1995)123<2534:AGNSLA>2.0.CO;2.
Shen, X. S., Y. Su, J. L. Hu, et al., 2017: Development and operation transformation of GRAPES global middle-range forecast system. J. Appl. Meteor. Sci., 28, 1–10, doi: 10.11898/1001-7313.20170101. (in Chinese)
Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 1053–1054, doi: 10.1126/science.1237554.
Tan, C., Q. J. Liu, and Z. S. Ma, 2013: Influences of sub-grid convective processes on cloud forecast in the GRAPES global model. Acta Meteor. Sinica, 71, 867–878, doi: 10.11676/qxxb2013.067. (in Chinese)
Taylor, M. A., J. Edwards, S. Thomas, et al., 2007: A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid. J. Phys. Conf. Ser., 78, 012074, doi: 10.1088/1742-6596/78/1/012074.
Thompson, D. W. J., and J. D. Woodworth, 2014: Barotropic and baroclinic annular variability in the Southern Hemisphere. J. Atmos. Sci., 71, 1480–1493, doi: 10.1175/JAS-D-13-0185.1.
Tomita, H., and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357–400, doi: 10.1016/j.fluiddyn.2004.03.003.
Tomita, H., H. Miura, S. Iga, et al., 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32, L08805, doi: 10.1029/2005GL022459.
Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129–148, doi: 10.1007/BF001 22760.
Wang, W. C., X. Z. Liang, M. P. Dudek, et al., 1995: Atmospheric ozone as a climate gas. Atmos. Res., 37, 247–256, doi: 10.1016/0169-8095(94)00080-W.
Wang, Z. Z., J. Y. Mao, and G. X. Wu, 2008: The wavenumberfrequency characteristics of the tropical waves in an aquaplanet GCM. Adv. Atmos. Sci., 25, 541–554, doi: 10.1007/s00376-008-0541-3.
Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399, doi: 10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO; 2.
Whitehead, J. P., C. Jablonowski, R. B. Rood, et al., 2011: A stability analysis of divergence damping on a latitude–longitude grid. Mon. Wea. Rev., 139, 2976–2993, doi: 10.1175/2011 MWR3607.1.
Williamson, D. L., 2007: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Japan, 85, 241–269, doi: 10.2151/jmsj.85B.241.
Williamson, D. L., 2008: Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations. Tellus A: Dyn. Meteor. Oceanogr., 60, 839–847, doi: 10.1111/j.1600-0870.2008.00340.x.
Williamson, D. L., M. Blackburn, B. J. Hoskins, et al., 2012: The APE ATLAS. NCAR/TN-484+STR, Boulder, Colorado, National Center for Atmospheric Research, 508 pp, doi: 10.5065/D6FF3QBR
Williamson, D. L., M. Blackburn, K. Nakajima, et al., 2013: The Aqua-Planet Experiment (APE): Response to changed meridional SST profile. J. Meteor. Soc. Japan, 91, 57–89, doi: 10.2151/jmsj.2013-A03.
Xiao, F., and X. D. Peng, 2004: A convexity preserving scheme for conservative advection transport. J. Comput. Phys., 198, 389–402, doi: 10.1016/j.jcp.2004.01.013.
Yang, Q., L. R. Leung, J. Lu, et al., 2017: Exploring the effects of a nonhydrostatic dynamical core in high-resolution aquaplanet simulations. J. Geophys. Res. Atmos., 122, 3245–3265, doi: 10. 1002/2016JD025287.
Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.-Ocean, 33, 407–446, doi: 10.1080/07055900.1995. 9649539.
Zeng, X. B., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 2628–2644, doi: 10.1175/1520-0442(1998)011 <2628:IOBAAF>2.0.CO;2.