Epigenetic silencing of genomic structural variations

Russian Journal of Genetics - Tập 53 - Trang 1072-1079 - 2017
N. A. Skryabin1,2, S. A. Vasilyev1,2, I. N. Lebedev1,2
1Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
2National Research Tomsk State University, Tomsk, Russia

Tóm tắt

A great amount of copy number variations (CNVs) are identified in the human genome. Most of them are neutral; nevertheless, the role of CNVs in the pathogenesis of hereditary diseases is still significant. Especially, this is important for neuropsychiatric disorders, such as intellectual disability and autism. When analyzing the CNV-associated diseases, the controversial question is to distinguish the pathogenic CNVs among common polymorphic variants and to predict the disease risk in other children of the family. Unfortunately, the mechanisms of phenotypic expression and incomplete penetrance of CNVs remain largely unknown. Currently, incomplete penetrance and variable expressivity of CNVs are attributed mainly to allelic interaction of different genetic variations. However, epigenetic mechanisms of gene expression regulation in the context of structural variation of the genome are poorly explored. It is possible that epigenetic modifications of the genome regions with CNVs may underlie the understanding of ways of phenotypic manifestations of structural variations in the human genome.

Tài liệu tham khảo

Iyer, J. and Girirajan, S., Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders, Brief. Funct. Genomics, 2015, vol. 14, no. 5, pp. 315–328. doi 10.1093/bfgp/ elv018 Christensen, D.L., Baio, J., Braun, K.V.N., et al., Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012, MMWR Surveill. Summ., 2016, vol. 65, no. 3, pp. 1–23. doi 10.15585/mmwr.ss6503a1 Filippova, N.V. and Baryl’nik, Yu.B., Epidemiology of autism: a modern view on the problem, Sots. Klin. Psikhiatr., 2014, vol. 24, no. 3, pp. 96–101. Persico, A.M. and Napolioni, V., Autism genetics, Behav. Brain Res., 2013, vol. 251, pp. 95–112. doi 10.1016/j.bbr.2013.06.012 Wang, B., Ji, T., Zhou, X., et al., CNV analysis in Chinese children of mental retardation highlights a sex differentiation in parental contribution to de novo and inherited mutational burdens, Sci. Rep., 2016, vol. 6: 25954. doi 10.1038/srep25954 Pembrey, M., Golding, J., and Connelly, J., ZNF277 microdeletions, specific language impairment and the meiotic mismatch methylation (3M) hypothesis, Eur. J. Hum. Genet., 2015, vol. 23, no. 9, p. 1113. doi 10.1038/ejhg.2014.262 Cini, G., Carnevali, I., Quaia, M., et al., Concomitant mutation and epimutation of the MLH1 gene in a Lynch syndrome family, Carcinogenesis, 2015, vol. 36, no. 4, pp. 452–458. doi 10.1093/carcin/bgv015 http://dgv.tcag.ca/dgv/app/home. https://decipher.sanger.ac.uk/. Rosenfeld, J.A., Coe, B.P., Eichler, E.E., et al., Estimates of penetrance for recurrent pathogenic copynumber variations, Genet. Med., 2013, vol. 15, pp. 478–481. doi 10.1038/gim.2012.164 Kirov, G., Rees, E., Walters, J.T.R., et al., The penetrance of copy number variations for schizophrenia and developmental delay, Biol. Psychiatry, 2014, vol. 75, no. 5, pp. 378–385. doi 10.1016/j.biopsych.2013.07.022 Vassos, E., Collier, D.A., Holden, S., et al., Penetrance for copy number variants associated with schizophrenia, Hum. Mol. Genet., 2010, vol. 19, no. 17, pp. 3477–3481. doi 10.1093/hmg/ddq259 Kashevarova, A.A., Nazarenko, L.P., Skryabin, N.A., et al., Array CGH analysis of a cohort of Russian patients with intellectual disability, Gene, 2014, vol. 536, no. 1, pp. 145–150. doi 10.1016/j.gene.2013.11.029 Kashevarova, A.A., Nazarenko, L.P., Schultz-Pedersen, S., et al., Single gene microdeletions and microduplication of 3p26.3 in three unrelated families: CNTN6 as a new candidate gene for intellectual disability, Mol. Cytogenet., 2014, vol. 7: 97. doi 10.1186/s13039-014- 0097-0 Beckmann, J.S., Estivill, X., and Antonarakis, S.E., Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability, Nat. Rev. Genet., 2007, vol. 8, no. 8, pp. 639–646. doi 10.1038/nrg2149 Lee, C. and Scherer, S.W., The clinical context of copy number variation in the human genome., Expert Rev. Mol. Med., 2010, vol. 12: e8. doi 10.1017/S1462399410001390 Lindstrand, A., Davis, E.E., Carvalho, C.M.B., et al., Recurrent CNVs and SNVs at the NPHP1 locus contribute pathogenic alleles to Bardet–Biedl syndrome, Am. J. Hum. Genet., 2014, vol. 94, no. 5, pp. 745–754. doi 10.1016/j.ajhg.2014.03.017 Sun, Y.V. and Kardia, S.L.R., Identification of epistatic effects using a protein–protein interaction database, Hum. Mol. Genet., 2010, vol. 19, no. 22, pp. 4345–4352. doi 10.1093/hmg/ddq356 Stam, M., Paramutation: a heritable change in gene expression by allelic interactions in trans, Mol. Plant, 2009, vol. 2, no. 4, pp. 578–588. doi 10.1093/mp/ssp020 Brink, R., A Genetic change associated with the R locus in maize which is directed and potentially reversible, Genetics, 1956, vol. 41, no. 6, pp. 872–889. Brink, R., Paramutation at the R locus in maize, Cold Spring Harb. Symp. Quant. Biol., 1958, vol. 23, pp. 379–391. Ronsseray, S., Paramutation phenomena in non-vertebrate animals, Semin. Cell Dev. Biol., 2015, vol. 44, pp. 39–46. doi 10.1016/j.semcdb.2015.08.009 Springer, N.M. and McGinnis, K.M., Paramutation in evolution, population genetics and breeding, Semin. Cell Dev. Biol., 2015, vol. 44, pp. 33–38. doi 10.1016/j.semcdb.2015.08.010 Hollick, J.B., Paramutation: a trans-homolog interaction affecting heritable gene regulation, Curr. Opin. Plant Biol., 2012, vol. 15, no. 5, pp. 536–543. doi 10.1016/j.pbi.2012.09.003 Hövel, I., Pearson, N.A., and Stam, M., Cis-acting determinants of paramutation, Semin. Cell Dev. Biol., 2015, vol. 44, pp. 3–32 doi 10.1016/j.semcdb.2015.08.012 Zhong, X., Hale, C.J., Law, J.A., et al., DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons, Nat. Struct. Mol. Biol., 2012, vol. 19, no. 9, pp. 870–875. doi 10.1038/nsmb.2354 Gent, J.I., Ellis, N.A., Guo, L., et al., CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize, Genome Res., 2013, vol. 23, no. 4, pp. 628–637. doi 10.1101/gr.146985.112 Aramayo, R. and Metzenberg, R.L., Meiotic transvection in fungi, Cell, 1996, vol. 86, no. 1, pp. 103–113. doi 10.1016/S0092-8674(00)80081-1 Hammond, T.M., Spollen, W.G., Decker, L.M., et al., Identification of small RNAs associated with meiotic silencing by unpaired DNA, Genetics, 2013, vol. 194, no. 1, pp. 279–284. doi 10.1534/genetics.112.149138 Wang, Y., Smith, K.M., Taylor, J.W., et al., Endogenous small RNA mediates meiotic silencing of a novel DNA transposon, G3 (Bethesda), 2015, vol. 5, no. 10, pp. 1949–1960. doi 10.1534/g3.115.017921 Turner, J.M.A., Meiotic silencing in mammals, Annu. Rev. Genet., 2015, vol. 49, pp. 3–412 doi 10.1146/annurev-genet-112414-055145 Fayer, S., Yu, Q., Kim, J., et al., Robertsonian translocations modify genomic distribution of ?H2AFX and H3.3 in mouse germ cells, Mamm. Genome, 2016, vol. 27, nos. 5–6, pp. 225–236. doi 10.1007/s00335-016-9630-2 Ceroni, F., Simpson, N.H., Francks, C., et al., Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment, Eur. J. Hum. Genet., 2014, vol. 22, no. 10, pp. 1165–1171. doi 10.1038/ejhg.2014.4 Gregory, S.G., Connelly, J.J., Towers, A.J., et al., Genomic and epigenetic evidence for oxytocin receptor deficiency in autism, BMC Med., 2009, vol. 7: 62. doi 10.1186/1741-7015-7-62 Smith, A.C., Suzuki, M., Thompson, R., et al., Maternal gametic transmission of translocations or inversions of human chromosome 11p15.5 results in regional DNA hypermethylation and downregulation of CDKN1C expression, Genomics, 2012, vol. 99, no. 1, pp. 25–35. doi 10.1016/j.ygeno.2011.10.007 Seisenberger, S., Peat, J.R., Hore, T.A., et al., Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers, Philos. Trans., 2013, vol. 368, no. 1609, p. 20110330. doi 10.1098/rstb.2011.0330 Guo, H., Zhu, P., Yan, L., et al., The DNA methylation landscape of human early embryos, Nature, 2014, vol. 511, no. 7511, pp. 606–610. doi 10.1038/ nature13544 Guo, F., Yan, L., Guo, H., et al., The transcriptome and DNA methylome landscapes of human primordial germ cells, Cell, 2015, vol. 161, no. 6, pp. 1437–1452. doi 10.1016/j.cell.2015.05.015