Explicit solutions for one-dimensional two-phase free boundary problems with either shrinkage or expansion
Tài liệu tham khảo
Cannon, 1984
Carslaw, 1959
Gupta, 2003
Lunardini, 1991
Rubinstein, 1971, vol. 27
D.A. Tarzia, A bibliography on moving - free boundary problems for the heat-diffusion equation. The Stefan and related problems, MAT-Serie A #2 (2000) (with 5869 references on the subject). See www.austral.edu.ar/MAT-SerieA/2(2000) or http://www.austral.edu.ar/fce/archivos/mat/Tarzia-MAT-SerieA-2(2000).pdf
Lee, 1995, Approximate determination of the shape of solidified materials with either shrinkage or expansion, J. Mech. Sci. Tech., 9, 502
Sparrow, 1982, Inward melting in a vertical tube which allows free expansion of the phase-change medium, J. Heat Transfer, 104, 309, 10.1115/1.3245089
Tarzia, 2007, Exact solution for a Stefan problem with convective boundary condition and density jump, PAMM, 7, 1040307, 10.1002/pamm.200700815
Wilson, 1986, A Stefan-type problem with void formation and its explicit solution, IMA J. Appl. Math., 37, 67, 10.1093/imamat/37.1.67
Yi, 2007, An one-dimensional two-phase free boundary problem in an angular domain, Nonlinear Anal. RWA, 8, 959, 10.1016/j.nonrwa.2006.04.003
Tarzia, 1981, An inequality for the coefficient σ of the free boundary s(t)=2σt of the Neumann solution for the two-phase Stefan problem, Quart. Appl. Math., 39, 491, 10.1090/qam/644103
Barber, 1989, An asymptotic solution for short-time transient heat conduction between two similar contacting bodies, Int. J. Heat Mass Transfer, 32, 943, 10.1016/0017-9310(89)90243-3
Coelho Pinheiro, 2000, Liquid phase mass transfer coefficients for bubbles growing in a pressure field: A simplified analysis, Int. Commun. Heat Mass Transfer, 27, 99, 10.1016/S0735-1933(00)00088-9
Polyanin, 1990, The method of the ‘carry over’ of integral transforms in non-linear mass and heat transfer problems, Int. J. Heat Mass Transfer, 33, 175, 10.1016/0017-9310(90)90151-J
Tarzia, 2004, An explicit solution for a two-phase unidimensional Stefan problem with a convective boundary condition at the fixed face, MAT-Serie A, 8, 21, 10.26422/MAT.A.2004.8.bri
Zubair, 1994, Exact solution of solid–liquid phase-change heat transfer when subjected to convective boundary conditions, Wärme- Stoffübertrag. (now Heat and Mass Transfer), 30, 77, 10.1007/BF00715013
Weinbaum, 1977, Singular perturbation theory for melting or freezing in finite domains initially not at fusion temperature, ASME J. Appl. Mech., 44, 25, 10.1115/1.3424008
Yang, 2003, Solidification of finite slab with convective cooling and shrinkage, Appl. Math. Modelling, 27, 733, 10.1016/S0307-904X(03)00078-7
Gianni, 2001, A free boundary problem in an absorbing porous material with saturation dependent permeability, Nonlinear Differ. Equ. Appl., 8, 219, 10.1007/PL00001446
Briozzo, 1999, Determination of unknown thermal coefficients for Storm’s-type materials through a phase-change process, Internat. J. Non-Linear Mech., 34, 324, 10.1016/S0020-7462(98)00036-5
Natale, 2003, The effect of heat convection on drying of porous semi-infinite space with a heat flux condition on the fixed face x=0, Appl. Math. Comput., 137, 109, 10.1016/S0096-3003(02)00090-5
Natale, 2000, Explicit solutions to the two-phase Stefan problem for Storm-type materials, J. Phys. A, 33, 395, 10.1088/0305-4470/33/2/312
Rogers, 1985, Application of a reciprocal transformation to a two-phase Stefan problem, J. Phys. A, 18, 105, 10.1088/0305-4470/18/3/002
Rogers, 1986, On a class of moving boundary problems in non-linear heat condition: Application of a Backlund transformation, Internat. J. Non-Linear Mech., 21, 249, 10.1016/0020-7462(86)90032-6
Fasano, 1999, Similarity solutions in class of thawing processes, Math. Models Methods Appl., 9, 1, 10.1142/S0218202599000026
Gonzalez, 1996, Determination of unknown coefficients of a semi-infinite material through a simple mushy zone model for the two phase Stefan problem, Internat. J. Engrg. Sci., 34, 799, 10.1016/0020-7225(95)00107-7