On a lattice-point problem in hyperbolic space and related questions in spectral theory

Arkiv för Matematik - Tập 26 - Trang 167-172 - 1988
S. J. Patterson1
1Mathematisches Institut, Göttingen, BRD

Tài liệu tham khảo

Colin de Verdiere, Y., Théorie spectrale des surfaces de Riemann d’aire infinie.Astérisque 132 (1985), 259–275. Lax, P. andPhillips, R. S., The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces.J. Funct. Anal. 46 (1982), 280–350. Mazzeo, R. R. andMelrose, R. B., Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature.Preprint, 1986. Nicholls, P. J. A lattice point problem in hyperbolic space.Michigan Math. J. 30 (1982), 273–287. Patterson, S. J., The limit set of a Fuchsian group.Acta Math. 136 (1976), 241–273. Patterson, S. J., Spectral theory and Fuchsian groups,Math. Proc. Cambridge Philos. Soc. 81 (1977), 59–75. Patterson, S. J., Lectures on measures on limit sets of Kleinian groups.Analytic and geometric aspects of hyperbolic space, Warwick and Durham, 1984, Ed. Epstein, D. B. A., Cambridge Univ. Press, 1986. Parry, W. andPollicot, M., An analogue of the prime number theorem for closed orbits of Axiom A flows.Ann. of Math. 118 (1983), 573–591. Ruelle, D., Repellers for real analytic maps.Ergodic Theory and Dynamical Systems 2 (1982), 99–107. Sullivan, D., The density at infinity of a discrete group of hyperbolic motions.Inst. Hautes Études Sci. Publ. Math. 50 (1979), 419–450. Sullivan, D., Discrete conformal groups and measurable dynamics,Bull. Amer. Math. Soc. 6 (1982), 57–73.