The Heat Shock Response: Life on the Verge of Death

Elsevier BV - Tập 40 Số 2 - Trang 253-266 - 2010
Klaus Klaus, Martin Martin, Johannes Johannes

Tài liệu tham khảo

Akerfelt, 2010, Heat shock factors: integrators of cell stress, development and lifespan, Nat. Rev. Mol. Cell Biol., 11, 545, 10.1038/nrm2938 Al Refaii, 2009, Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ, Mol. Microbiol., 71, 748, 10.1111/j.1365-2958.2008.06561.x Albanèse, 2006, Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells, Cell, 124, 75, 10.1016/j.cell.2005.11.039 Ashburner, 1979, The induction of gene activity in drosophilia by heat shock, Cell, 17, 241, 10.1016/0092-8674(79)90150-8 Barends, 2010, Disaggregases in 4 dimensions, Curr. Opin. Struct. Biol., 20, 46, 10.1016/j.sbi.2009.12.014 Boulon, 2010, The nucleolus under stress, Mol. Cell, 40, 216, 10.1016/j.molcel.2010.09.024 Brown, 1998, What makes a thermophile?, Trends Microbiol., 6, 349, 10.1016/S0966-842X(98)01351-1 Buchan, 2009, Eukaryotic stress granules: the ins and outs of translation, Mol. Cell, 36, 932, 10.1016/j.molcel.2009.11.020 Bügl, 2000, RNA methylation under heat shock control, Mol. Cell, 6, 349, 10.1016/S1097-2765(00)00035-6 Bukau, 1996, Growing up in a dangerous environment: a network of multiple targeting and folding pathways for nascent polypeptides in the cytosol, Trends Cell Biol., 6, 480, 10.1016/0962-8924(96)84946-4 Cashikar, 2005, A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104, J. Biol. Chem., 280, 23869, 10.1074/jbc.M502854200 Coote, 1991, Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH, J. Gen. Microbiol., 137, 1701, 10.1099/00221287-137-7-1701 Courgeon, 1984, Heat shock proteins are induced by cadmium in Drosophila cells, Exp. Cell Res., 153, 515, 10.1016/0014-4827(84)90618-9 Crowe, 2001, The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state, Cryobiology, 43, 89, 10.1006/cryo.2001.2353 D'Amico, 2006, Psychrophilic microorganisms: challenges for life, EMBO Rep., 7, 385, 10.1038/sj.embor.7400662 De Donatis, 2010, A single ClpS monomer is sufficient to direct the activity of the ClpA hexamer, J. Biol. Chem., 285, 8771, 10.1074/jbc.M109.053736 Deuerling, 2004, Chaperone-assisted folding of newly synthesized proteins in the cytosol, Crit. Rev. Biochem. Mol. Biol., 39, 261, 10.1080/10409230490892496 Dougan, 2010, The bacterial N-end rule pathway: expect the unexpected, Mol. Microbiol., 76, 545, 10.1111/j.1365-2958.2010.07120.x Doyle, 2007, Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity, Nat. Struct. Mol. Biol., 14, 114, 10.1038/nsmb1198 Dunn, 2001, Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT, J. Struct. Biol., 135, 176, 10.1006/jsbi.2001.4380 Eisen, 1998, Cluster analysis and display of genome-wide expression patterns, Proc. Natl. Acad. Sci. USA, 95, 14863, 10.1073/pnas.95.25.14863 Ellis, 1989, The molecular chaperone concept, Biochem. Soc. Symp., 55, 145 Erickson, 1989, Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression, Genes Dev., 3, 1462, 10.1101/gad.3.9.1462 Fang, 1997, Promoter-independent cold-shock induction of cspA and its derepression at 37 degrees C by mRNA stabilization, Mol. Microbiol., 23, 355, 10.1046/j.1365-2958.1997.2351592.x Gasch, 2000, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell, 11, 4241, 10.1091/mbc.11.12.4241 Goldschmidt, 1935, Gen und Ausseneigenschaft. Indukt, Abstammungs Vererbungsl., 69, 38 Goloubinoff, 1989, GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli, Nature, 337, 44, 10.1038/337044a0 Goloubinoff, 1999, Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network, Proc. Natl. Acad. Sci. USA, 96, 13732, 10.1073/pnas.96.24.13732 Goloubinoff, 2007, The mechanism of Hsp70 chaperones: (entropic) pulling the models together, Trends Biochem. Sci., 32, 372, 10.1016/j.tibs.2007.06.008 Gragerov, 1991, Protein aggregation and inclusion body formation in Escherichia coli rpoH mutant defective in heat shock protein induction, FEBS Lett., 291, 222, 10.1016/0014-5793(91)81289-K Grallert, 2001, Review: a structural view of the GroE chaperone cycle, J. Struct. Biol., 135, 95, 10.1006/jsbi.2001.4387 Groemping, 2001, Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response, J. Mol. Biol., 314, 167, 10.1006/jmbi.2001.5116 Grossman, 1984, The htpR gene product of E. coli is a sigma factor for heat-shock promoters, Cell, 38, 383, 10.1016/0092-8674(84)90493-8 GuhaThakurta, 2002, Identification of a novel cis-regulatory element involved in the heat shock response in Caenorhabditis elegans using microarray gene expression and computational methods, Genome Res., 12, 701, 10.1101/gr.228902 Hartl, 2002, Molecular chaperones in the cytosol: from nascent chain to folded protein, Science, 295, 1852, 10.1126/science.1068408 Hasenbein, 2010, Conversion of a regulatory into a degradative protease, J. Mol. Biol., 397, 957, 10.1016/j.jmb.2010.02.027 Haslbeck, 2005, Some like it hot: the structure and function of small heat-shock proteins, Nat. Struct. Mol. Biol., 12, 842, 10.1038/nsmb993 Haslbeck, 2005, Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104, J. Biol. Chem., 280, 23861, 10.1074/jbc.M502697200 Haslbeck, 1999, Hsp26: a temperature-regulated chaperone, EMBO J., 18, 6744, 10.1093/emboj/18.23.6744 Haslberger, 2007, M domains couple the ClpB threading motor with the DnaK chaperone activity, Mol. Cell, 25, 247, 10.1016/j.molcel.2006.11.008 Heikkila, 1982, Expression of a set of fish genes following heat or metal ion exposure, J. Biol. Chem., 257, 12000, 10.1016/S0021-9258(18)33667-6 Hessling, 2009, Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90, Nat. Struct. Mol. Biol., 16, 287, 10.1038/nsmb.1565 Hietakangas, 2003, Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1, Mol. Cell. Biol., 23, 2953, 10.1128/MCB.23.8.2953-2968.2003 Holmberg, 2001, Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1, EMBO J., 20, 3800, 10.1093/emboj/20.14.3800 Horwich, 2006, GroEL-GroES-mediated protein folding, Chem. Rev., 106, 1917, 10.1021/cr040435v Horwitz, 2003, Alpha-crystallin, Exp. Eye Res., 76, 145, 10.1016/S0014-4835(02)00278-6 Hottiger, 1994, The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro, Eur. J. Biochem., 219, 187, 10.1111/j.1432-1033.1994.tb19929.x Hottiger, 1987, Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae, J. Bacteriol., 169, 5518, 10.1128/jb.169.12.5518-5522.1987 Jakob, 1995, Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo, J. Biol. Chem., 270, 7288, 10.1074/jbc.270.13.7288 Jakob, 1999, Chaperone activity with a redox switch, Cell, 96, 341, 10.1016/S0092-8674(00)80547-4 Jamrich, 1977, Localization of RNA polymerase in polytene chromosomes of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 74, 2079, 10.1073/pnas.74.5.2079 Jantschitsch, 2003, Heat shock and UV-B-induced DNA damage and mutagenesis in skin, Photochem. Photobiol. Sci., 2, 899, 10.1039/b301253k Kampinga, 2010, The HSP70 chaperone machinery: J proteins as drivers of functional specificity, Nat. Rev. Mol. Cell Biol., 11, 579, 10.1038/nrm2941 Kelley, 1978, The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts, Cell, 15, 1277, 10.1016/0092-8674(78)90053-3 Kerner, 2005, Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli, Cell, 122, 209, 10.1016/j.cell.2005.05.028 Kiefhaber, 1991, Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation, Biotechnology (N. Y.), 9, 825, 10.1038/nbt0991-825 Kim, 2010, Structural basis for the negative regulation of bacterial stress response by RseB, Protein Sci., 19, 1258, 10.1002/pro.393 Kirkegaard, 2010, Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology, Nature, 463, 549, 10.1038/nature08710 Klinkert, 2009, Microbial thermosensors, Cell. Mol. Life Sci., 66, 2661, 10.1007/s00018-009-0041-3 Kriehuber, 2010, Independent evolution of the core domain and its flanking sequences in small heat shock proteins, FASEB J., 24, 3633, 10.1096/fj.10-156992 Krojer, 2008, Structural basis for the regulated protease and chaperone function of DegP, Nature, 453, 885, 10.1038/nature07004 Kruuv, 1983, Factors influencing survival and growth of mammalian cells exposed to hypothermia. I. Effects of temperature and membrane lipid perturbers, J. Cell. Physiol., 115, 179, 10.1002/jcp.1041150212 Kumsta, 2009, Redox-regulated chaperones, Biochemistry, 48, 4666, 10.1021/bi9003556 Kwon, 2004, Kinetics of protein substrate degradation by HslUV, J. Struct. Biol., 146, 141, 10.1016/j.jsb.2003.11.003 Lambowitz, 1983, Possible relationship of morphogenesis in pathogenic fungus, Histoplasma capsulatum, to heat shock response, Nature, 303, 806, 10.1038/303806a0 Large, 2009, Chaperones and protein folding in the archaea, Biochem. Soc. Trans., 37, 46, 10.1042/BST0370046 Larkindale, 2008, Core genome responses involved in acclimation to high temperature, Plant Physiol., 146, 748, 10.1104/pp.107.112060 Lee, 1997, A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state, EMBO J., 16, 659, 10.1093/emboj/16.3.659 Lee, 2010, Control of substrate gating and translocation into ClpP by channel residues and ClpX binding, J. Mol. Biol., 399, 707, 10.1016/j.jmb.2010.04.027 Lemaux, 1978, Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts, Cell, 13, 427, 10.1016/0092-8674(78)90317-3 Li, 2010, Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle, Nat. Struct. Mol. Biol. Liberek, 2008, Chaperones in control of protein disaggregation, EMBO J., 27, 328, 10.1038/sj.emboj.7601970 Lindquist, 1980, Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation, Dev. Biol., 77, 463, 10.1016/0012-1606(80)90488-1 Lindquist, 1986, The heat-shock response, Annu. Rev. Biochem., 55, 1151, 10.1146/annurev.bi.55.070186.005443 Lindquist, 1988, The heat-shock proteins, Annu. Rev. Genet., 22, 631, 10.1146/annurev.ge.22.120188.003215 Macario, 2006, Evolution of a protein-folding machine: genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene, J. Mol. Evol., 63, 74, 10.1007/s00239-005-6207-1 Malmendal, 2006, Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila, Am. J. Physiol. Regul. Integr. Comp. Physiol., 291, R205, 10.1152/ajpregu.00867.2005 Martin, 2005, Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines, Nature, 437, 1115, 10.1038/nature04031 Matsuura, 2010, Genome-wide analyses of early translational responses to elevated temperature and high salinity in Arabidopsis thaliana, Plant Cell Physiol., 51, 448, 10.1093/pcp/pcq010 Mayer, 2005, Hsp70 chaperones: cellular functions and molecular mechanism, Cell. Mol. Life Sci., 62, 670, 10.1007/s00018-004-4464-6 Mayer, 2010, Gymnastics of molecular chaperones, Mol. Cell, 39, 321, 10.1016/j.molcel.2010.07.012 McAlister, 1980, Heat shock proteins and thermal resistance in yeast, Biochem. Biophys. Res. Commun., 93, 819, 10.1016/0006-291X(80)91150-X McHaourab, 2009, Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins, Biochemistry, 48, 3828, 10.1021/bi900212j Merdanovic, 2010, Determinants of structural and functional plasticity of a widely conserved protease chaperone complex, Nat. Struct. Mol. Biol., 17, 837, 10.1038/nsmb.1839 Meulmeester, 2008, Cell biology: SUMO, Nature, 452, 709, 10.1038/452709a Michel, 1986, Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis, J. Bacteriol., 165, 1040, 10.1128/jb.165.3.1040-1042.1986 Mogk, 2003, Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK, J. Biol. Chem., 278, 31033, 10.1074/jbc.M303587200 Morimoto, 1990, Stress Proteins, 450 Morita, 1999, Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor, Genes Dev., 13, 655, 10.1101/gad.13.6.655 Nagy, 2007, Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line, Proc. Natl. Acad. Sci. USA, 104, 7945, 10.1073/pnas.0702557104 Nover, 1989, Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs, Mol. Cell. Biol., 9, 1298, 10.1128/MCB.9.3.1298 Parag, 1987, Effect of heat shock on protein degradation in mammalian cells: involvement of the ubiquitin system, EMBO J., 6, 55, 10.1002/j.1460-2075.1987.tb04718.x Patriarca, 1990, Acquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Saccharomyces cerevisiae, Exp. Cell Res., 190, 57, 10.1016/0014-4827(90)90143-X Pearl, 2006, Structure and mechanism of the Hsp90 molecular chaperone machinery, Annu. Rev. Biochem., 75, 271, 10.1146/annurev.biochem.75.103004.142738 Peterson, 1979, Genetic mapping of the coding regions for three heat-shock proteins in Drosophila melanogaster, Genetics, 92, 891, 10.1093/genetics/92.3.891 Phipps, 1991, A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria, EMBO J., 10, 1711, 10.1002/j.1460-2075.1991.tb07695.x Picard, 2002, Heat-shock protein 90, a chaperone for folding and regulation, Cell. Mol. Life Sci., 59, 1640, 10.1007/PL00012491 Piper, 2003, Sensitivity to Hsp90-targeting drugs can arise with mutation to the Hsp90 chaperone, cochaperones and plasma membrane ATP binding cassette transporters of yeast, Eur. J. Biochem., 270, 4689, 10.1046/j.1432-1033.2003.03866.x Prahlad, 2008, Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons, Science, 320, 811, 10.1126/science.1156093 Prahlad, 2009, Integrating the stress response: lesson for neurodegenerative diseases from C. elegans, Trends Cell Biol., 2, 52, 10.1016/j.tcb.2008.11.002 Pratt, 2003, Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery, Exp. Biol. Med. (Maywood), 228, 111, 10.1177/153537020322800201 Rhodius, 2010, Predicting strength and function for promoters of the Escherichia coli alternate sigma factor, σ, E. Proc. Natl. Acad. Sci. USA, 107, 2854, 10.1073/pnas.0915066107 Richmond, 1999, Genome-wide expression profiling in Escherichia coli K-12, Nucleic Acids Res., 27, 3821, 10.1093/nar/27.19.3821 Richter, 2003, Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle, J. Biol. Chem., 278, 10328, 10.1074/jbc.M213094200 Ritossa, 1962, A new puffing pattern induced by a temperature shock and DNP in Drosophila, Experientia, 18, 571, 10.1007/BF02172188 Rodriguez, 2008, Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones, Mol. Cell, 32, 347, 10.1016/j.molcel.2008.09.016 Rohlin, 2005, Heat shock response of Archaeoglobus fulgidus, J. Bacteriol., 187, 6046, 10.1128/JB.187.17.6046-6057.2005 Rospert, 2006, Distinct yet linked: chaperone networks in the eukaryotic cytosol, Genome Biol., 7, 208, 10.1186/gb-2006-7-3-208 Rudolph, 2010, Evolution of Escherichia coli for growth at high temperatures, J. Biol. Chem., 285, 19029, 10.1074/jbc.M110.103374 Saidi, 2009, The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma mebrane, Plant Cell, 9, 2829, 10.1105/tpc.108.065318 Schaupp, 2007, Processing of proteins by the molecular chaperone Hsp104, J. Mol. Biol., 370, 674, 10.1016/j.jmb.2007.04.070 Schirmer, 1996, HSP100/Clp proteins: a common mechanism explains diverse functions, Trends Biochem. Sci., 21, 289, 10.1016/S0968-0004(96)10038-4 Schrader, 2009, Targeting proteins for degradation, Nat. Chem. Biol., 5, 815, 10.1038/nchembio.250 Sharma, 2008, Monitoring protein conformation along the pathway of chaperonin-assisted folding, Cell, 133, 142, 10.1016/j.cell.2008.01.048 Shivaji, 2010, How do bacteria sense and respond to low temperature?, Arch. Microbiol., 192, 85, 10.1007/s00203-009-0539-y Singer, 1998, Multiple effects of trehalose on protein folding in vitro and in vivo, Mol. Cell, 1, 639, 10.1016/S1097-2765(00)80064-7 Singer, 1998, Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose, Trends Biotechnol., 16, 460, 10.1016/S0167-7799(98)01251-7 Smith, 1998, Sequence motifs shared between chaperone components participating in the assembly of progesterone receptor complexes, Biol. Chem., 379, 283 Spiess, 1999, A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein, Cell, 97, 339, 10.1016/S0092-8674(00)80743-6 Stetter, 2006, Hyperthermophiles in the history of life, Philos. Trans. R. Soc. Lond. B Biol. Sci., 361, 1837, 10.1098/rstb.2006.1907 Sundar, S., McGinness, K.E., Baker, T.A. and Sauer, R.T. (2010). Multiple sequences signals direct recognition and degradation of protein substrates by the AAA+ protease HslUV. Published online September 15, 2010. Szalay, 2007, Stress-induced rearrangements of cellular networks: Consequences for protection and drug design, FEBS Lett., 581, 3675, 10.1016/j.febslet.2007.03.083 Tabuchi, 2008, Genes and genetic networks responsive to mild hyperthermia in human lymphoma U937 cells, Int. J. Hyperthermia, 24, 613, 10.1080/02656730802140777 Tachdjian, 2006, Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus, J. Bacteriol., 188, 4553, 10.1128/JB.00080-06 Taipale, 2010, HSP90 at the hub of protein homeostasis: emerging mechanistic insights, Nat. Rev. Mol. Cell Biol., 11, 515, 10.1038/nrm2918 Takai, 1998, Acquired thermotolerance and temperature-induced protein accumulation in the extremely thermophilic bacterium Rhodothermus obamensis, J. Bacteriol., 180, 2770, 10.1128/JB.180.10.2770-2774.1998 Thibault, 2006, Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX, Proc. Natl. Acad. Sci. USA, 103, 17724, 10.1073/pnas.0601505103 Todd, 1994, Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding, Science, 265, 659, 10.1126/science.7913555 Toivola, 2010, Intermediate filaments take the heat as stress proteins, Trends Cell Biol., 20, 79, 10.1016/j.tcb.2009.11.004 Van Montfort, 2001, Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones, Adv. Protein Chem., 59, 105, 10.1016/S0065-3233(01)59004-X Vigh, 1993, The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803, Proc. Natl. Acad. Sci. USA, 90, 9090, 10.1073/pnas.90.19.9090 Vigh, 2007, Membrane regulation of the stress response from prokaryotic models to mammalian cells, Ann. N Y Acad. Sci., 1113, 40, 10.1196/annals.1391.027 Viitanen, 1992, Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins, Protein Sci., 1, 363, 10.1002/pro.5560010308 Voellmy, 2007, Chaperone regulation of the heat shock protein response, Adv. Exp. Med. Biol., 594, 89, 10.1007/978-0-387-39975-1_9 Vogel, 1995, Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation, Curr. Biol., 5, 306, 10.1016/S0960-9822(95)00061-3 Voit, 2000, Biochemical systems analysis of genome-wide expression data, Bioinformatics, 16, 1023, 10.1093/bioinformatics/16.11.1023 Walter, 2002, Molecular chaperones—cellular machines for protein folding, Angew. Chem. Int. Ed. Engl., 41, 1098, 10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9 Walsh, 2003, OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain, Cell, 113, 61, 10.1016/S0092-8674(03)00203-4 Wandinger, 2008, The Hsp90 chaperone machinery, J. Biol. Chem., 283, 18473, 10.1074/jbc.R800007200 Weber-Ban, 1999, Global unfolding of a substrate protein by the Hsp100 chaperone ClpA, Nature, 401, 90, 10.1038/43481 Welch, 1982, Purification of the major mammalian heat shock proteins, J. Biol. Chem., 257, 14949, 10.1016/S0021-9258(18)33376-3 Welch, 1985, Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment, J. Cell Biol., 101, 1198, 10.1083/jcb.101.4.1198 Welch, 1986, Cellular and biochemical events in mammalian cells during and after recovery from physiological stress, J. Cell Biol., 103, 2035, 10.1083/jcb.103.5.2035 Welker, 2010, Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function, Mol. Cell, 39, 507, 10.1016/j.molcel.2010.08.001 Westerheide, 2009, Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1, Science, 323, 1063, 10.1126/science.1165946 Winkler, 2010, Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing, EMBO J., 29, 910, 10.1038/emboj.2009.412 Wong, 2004, Chaperone networks in bacteria: analysis of protein homeostasis in minimal cells, J. Struct. Biol., 146, 79, 10.1016/j.jsb.2003.11.006 Wu, 1986, Human HSP70 promoter contains at least two distinct regulatory domains, Proc. Natl. Acad. Sci. USA, 83, 629, 10.1073/pnas.83.3.629 Wu, 1984, Two protein-binding sites in chromatin implicated in the activation of heat-shock genes, Nature, 309, 229, 10.1038/309229a0 Yam, 2008, Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies, Nat. Struct. Mol. Biol., 15, 1255, 10.1038/nsmb.1515 Yost, 1986, RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis, Cell, 45, 185, 10.1016/0092-8674(86)90382-X Yura, 1984, Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature, Proc. Natl. Acad. Sci. USA, 81, 6803, 10.1073/pnas.81.21.6803 Zeuthen, 1971, Synchrony in Tetrahymena by heat shocks spaced a normal cell generation apart, Exp. Cell Res., 68, 49, 10.1016/0014-4827(71)90585-4 Zhu, 1996, Structural analysis of substrate binding by the molecular chaperone DnaK, Science, 272, 1606, 10.1126/science.272.5268.1606