Genetic diversity in Kashubs: the regional increase in the frequency of several disease-causing variants

Journal of Applied Genetics - Tập 63 - Trang 691-701 - 2022
Maciej Jankowski1, Patrycja Daca-Roszak2, Cezary Obracht-Prondzyński3, Rafał Płoski4, Beata S. Lipska-Ziętkiewicz5,6, Ewa Ziętkiewicz2
1Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
2Institute of Human Genetics Polish Academy of Sciences, Poznan, Poland
3Institute of Sociology, University of Gdansk, Gdansk, Poland
4Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
5Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
6Centre for Rare Diseases, Medical University of Gdansk, Gdansk, Poland

Tóm tắt

Differential distribution of genetic variants’ frequency among human populations is caused by the genetic drift in isolated populations, historical migrations, and demography. Some of these variants are identical by descent and represent founder mutations, which — if pathogenic in nature — lead to the increased frequency of otherwise rare diseases. The detection of the increased regional prevalence of pathogenic variants may shed light on the historical processes that affected studied populations and can help to develop effective screening and diagnostic strategies as a part of personalized medicine. Here, we discuss the specific genetic diversity in Kashubs, the minority group living in northern Poland, reflected in the biased distribution of some of the repetitively found disease-causing variants. These include the following: (1) c.662A > G (p.Asp221Gly) in LDLR, causing heterozygous familial hypercholesterolemia; (2) c.3700_3704del in BRCA1, associated with hereditary breast and ovarian cancer syndrome; (3) c.1528G > C (p.Glu510Gln) in HADHA, seen in long-chain 3-hydroxy acyl-CoA dehydrogenase (LCHAD) deficiency, and (4) c.1032delT in NPHS2, associated with steroid-resistant nephrotic syndrome.

Tài liệu tham khảo

ACT 2005: The act on national and ethnic minorities and regional language: https://www.gov.pl/attachment/f6197e7c-2c12-45e5-8fa2-77dcb3b9657c]. Austin MA, Hutter CM, Zimmern RL, Humphries SE (2004) Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am J Epidemiol 160:407–420. https://doi.org/10.1093/aje/kwh236 Berdeli A, Mir S, Yavascan O et al (2007) NPHS2 (podicin) mutations in Turkish children with idiopathic nephrotic syndrome. Pediatr Nephrol 22:2031–2040. https://doi.org/10.1007/s00467-007-0595-y Bertolini S, Cantafora A, Averna M et al (2000) Clinical expression of familial hypercholesterolemia in clusters of mutations of the LDL receptor gene that cause a receptor-defective or receptor-negative phenotype. Arterioscler Thromb Vasc Biol 20:E41-52. https://doi.org/10.1161/01.atv.20.9.e41 Bezdicka M, Stolbova S, Seeman T et al (2018) Genetic diagnosis of steroid-resistant nephrotic syndrome in a longitudinal collection of Czech and Slovak patients: a high proportion of causative variants in NUP93. Pediatr Nephrol 33:1347–1363. https://doi.org/10.1007/s00467-018-3950-2 Bouchireb K, Boyer O, Gribouval O, et al (2014) NPHS2 mutations in steroid-resistant nephrotic syndrome: a mutation update and the associated phenotypic spectrum. Hum Mutat 35https://doi.org/10.1002/humu.22485 Brożek I, Ochman K, Dębniak J et al (2008) High frequency of BRCA1/2 germline mutations in consecutive ovarian cancer patients in Poland. Gynecol Oncol 108:433–437. https://doi.org/10.1016/j.ygyno.2007.09.035 Brożek I, Cybulska C, Ratajska M et al (2011) Prevalence of the most frequent BRCA1 mutations in Polish population. J Appl Genet 52:325–330. https://doi.org/10.1007/s13353-011-0040-6 Brożek I, Ratajska M, Piątkowska M et al (2012) Limited significance of family history for presence of BRCA1 genemutation in Polish breast and ovarian cancer cases. Fam Cancer 11:351–354. https://doi.org/10.1007/s10689-012-9519-5 Caridi G, Gigante M, Ravani P et al (2005) NPHS2 (Podocin) Mutations in nephrotic syndrome. Clinical spectrum and fine mechanisms. Pediatric Res 57:54-61R. https://doi.org/10.1203/01.PDR.0000160446.01907.B1 Caridi G, Gigante M, Ravani P et al (2009) Clinical features and long-term outcome of nephrotic syndrome associated with heterozygous NPHS1 and NPHS2 mutations. Clin J Am Soc Nephrol 4:1065–1072. https://doi.org/10.2215/CJN.03910808 Chmara M, Wasąg B, Żuk M et al (2010) Molecular characterization of Polish patients with familial hypercholesterolemia: novel and recurrent LDLR mutations. J Appl Genet 51:95–106. https://doi.org/10.1007/BF03195716 Csokay B, Tihomirova L, Stengrevics A, Sinicka O, Olah E (1999) Strong founder effects in BRCA1 mutation carrier breast cancer patients from Latvia. Hum Mutat 14:92. 1 0.1002/(sici)1098–1004(1999)14:1<92::aid-humu23>3.0.co;2–2. Dedoussis GVZ, Schmidt H, Genschel J (2004) LDL-receptor mutations in Europe. Hum Mutat 24:443–459. https://doi.org/10.1002/humu.20105 den Boer ME, Ijlst L, Wijburg FA et al (2000) Heterozygosity for the common LCHAD mutation (1528G>C) is not a major cause of HELLP syndrome and the prevalence of the mutation in the Dutch population is low. Pediatr Res 48:151–154. https://doi.org/10.1203/00006450-200008000-00006 Elsakov P, Kurtinaitis J, Petraitis S, Ostapenko V, Razumas M, Razumas T et al (2010) The contribution of founder mutations in BRCA1 to breast and ovarian cancer in Lithuania. Clin Genet 78:373–376. https://doi.org/10.1111/j.1399-0004.2010.01404.x Gaj P, Kluska A, Nowakowska D et al (2012) High frequency of BRCA1 founder mutations in Polish women with nonfamilial breast cancer. Fam Cancer 11:623–628. https://doi.org/10.1007/s10689-012-9560-4 Gandolfo LC, Bahlo M, Speed TP (2014) Dating rare mutations from small samples with dense marker data. Genetics 197:1315–1327. https://doi.org/10.1534/genetics.114.164616 Górski B (2006) Selected aspects of molecular diagnostics of constitutional alterations in BRCA1 and BRCA2 genes associated with increased risk of breast cancer in the Polish population. Hereditary Cancer in Clinical Practice 4:142–152. https://doi.org/10.1186/1897-4287-4-3-142 Górski B, Kubalska J, Naruszewicz M, Lubiński J (1998) LDL-R and Apo-B-100 gene mutations in Polish familial hypercholesterolemias. Hum Genet 102:562–565. https://doi.org/10.1007/s004390050740 Greenwood CM, Sun S, Veenstra J et al (2010) How old is this mutation? - a study of three Ashkenazi Jewish founder mutations. BMC Genet 11:39. https://doi.org/10.1186/1471-2156-11-39 Gronkiewicz L (1996) Regional differentiation of blood group frequencies in the Polish population. Folia Med Cracov 37:13–28 Grzybowski T, Malyarchuk BA, Derenko MV et al (2007) Complex interactions of the Eastern and Western Slavic populations with other European groups as revealed by mitochondrial DNA analysis. Forensic Sci Int Genet 1:141–147. https://doi.org/10.1016/j.fsigen.2007.01.010 Gudaszewski G (2015) Struktura narodowo-etniczna, językowa i wyznaniowa ludności Polski. Narodowy Spis Powszechny Ludności i Mieszkań 2011. Warsaw: Główny Urząd Statystyczny. ISBN 978–83–7027–597–6. Hamel N, Feng B-J, Foretova L et al (2011) On the origin and diffusion of BRCA1 c.5266dupC (5382insC) in European populations. Eur J Hum Genet 19:300–306. https://doi.org/10.1038/ejhg.2010.203 Hartwig M, Janiszewska H, Bąk A et al (2013) Prevalence of the BRCA1 c.68_69delAG (BIC: 185delAG) mutation in women with breast cancer from north-central Poland and a review of the literature on other regions of the country. Contemp Oncol (pozn) 17:34–37. https://doi.org/10.5114/wo.2013.33767 Heramb C, Wangensteen T, Grindedal EM et al (2018) BRCA1 and BRCA2 mutation spectrum - an update on mutation distribution in a large cancer genetics clinic in Norway. Hered Cancer Clin Pract 16:3. https://doi.org/10.1186/s13053-017-0085-6 Hinkes BG, Mucha B, Vlangos CN et al (2007) Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119:e907–e919. https://doi.org/10.1542/peds.2006-2164 IJlst L, Ruiter JP, Hoovers JM, Jakobs ME, Wanders RJ (1996) Common missense mutation G1528C in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Characterization and expression of the mutant protein, mutation analysis on genomic DNA and chromosomal localization of the mitochondrial trifunctional protein alpha subunit gene. J Clin Invest 98(4):1028–1033. https://doi.org/10.1172/JCI118863 Jagodziński PP, Lecybyl R, Ignacak M et al (2000) Distribution of Δ32 alelle of the CCR5 gene in the population of Poland. J Hum Genet 45:271–274. https://doi.org/10.1007/s100380070014 Jakimovska M, Maleva Kostovska I, Popovska-Jankovic K et al (2018) BRCA1 and BRCA2 germline variants in breast cancer patients from the Republic of Macedonia. Breast Cancer Res Treat 168:745–753. https://doi.org/10.1007/s10549-017-4642-5 Janavicius R, Rudatis V, Feng BJ et al (2012) Haplotype analysis and ancient origin of the BRCA1 c.4035delA Baltic founder mutation. Eur J Med Gen 56:P125–P130. https://doi.org/10.1016/j.ejmg.2012.12.007 Jarczak J, Grochowalski L, Marciniak B et al (2019) Mitochondrial DNA variability of the Polish population. Eur J Hum Genet 27:1304–1314. https://doi.org/10.1038/s41431-019-0381-x Joost K, Ounap K, Zordania R et al (2012) Prevalence of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency in Estonia. JIMD Rep 2:79–85. https://doi.org/10.1007/8904_2011_51 Kaja E, Lejman A, Sielski D, et al (2021) The Thousand Polish Genomes Project - a national database of Polish variant allele frequencies. bioRxiv 2021.07.07.451425. https://doi.org/10.1101/2021.07.07.451425 Kaufman B, Laitman Y, Gronwald J et al (2009) Haplotype of the C61G BRCA1 mutation in Polish and Jewish individuals. Genet Test Mol Biomarkers 13:465–469. https://doi.org/10.1089/gtmb.2009.0001 Kerti A, Csohany R, Szabo A et al (2013) NPHS2 p. V290M mutation in late-onset steroid-resistant nephrotic syndrome. Pediatr Nephrol 28:751–757. https://doi.org/10.1007/s00467-012-2379-2 Kluz T, Jasiewicz A, Marczyk E et al (2018) Frequency of BRCA1 and BRCA2 causative founder variants in ovarian cancer patients in South-East Poland. Hered Cancer Clin Pract 16:6. https://doi.org/10.1186/s13053-018-0089-x Koczkowska M, Krawczynska N, Stukan M et al (2018) Spectrum and prevalence of pathogenic variants in ovarian cancer susceptibility genes in a group of 333 patients. Cancers (basel) 10:442. https://doi.org/10.3390/cancers10110442 Konstantinopoulou I, Tsitlaido M, Fostira F et al (2014) High prevalence of BRCA1 founder mutations in Greek breast/ovarian families. Clin Genet 85:36–42. https://doi.org/10.1111/cge.12274 Kowalik A, Siolek M, Kopczyński J et al (2018) BRCA1 founder mutations and beyond in the Polish population: a single-institution BRCA1/2 next-generation sequencing study. PLoS ONE 13:e0201086. https://doi.org/10.1371/journal.pone.0201086 Kwaśniewska A. (2021) Dobor przestrzenny, religijny oraz narodowosciowy malzenstw i tożsamosc Kaszubow w kontekscie choroby genetycznej. Etnografia Polska, LXV, 1–2; PL ISSN 0071–1861; https://doi.org/10.23858/EP65.2021.2738. Labuda M, Labuda D, Korab-Laskowska M, Cole DEC, Ziętkiewicz E, Weissenbach J, Popowska E et al (1996) Linkage disequilibrium analysis in young populations: pseudo-vitamin D-deficiency rickets and the founder effect in French Canadians. Am J Hum Genet 59:633–643 Labuda D, Ziętkiewicz E, Labuda M (1997) The genetic clock and the age of the founder effect in growing populations: a lesson from French Canadians and Ashkenazim. Am J Hum Genet 61:768–771 Labuda G (2006) Historia Kaszubów w dziejach Pomorza, part 1. Instytut Kaszubski, Gdańsk Lipska-Ziętkiewicz BS (2021) Genetic Steroid-Resistant Nephrotic Syndrome Overview. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK573219/ Lipska BS, Balasz-Chmielewska I, Morzuch L et al (2013a) Mutational analysis in podocin-associated hereditary nephrotic syndrome in Polish patients: founder effect in the Kashubian population. J Appl Genet 54:327–333. https://doi.org/10.1007/s13353-013-0147-z Lipska BS, Iatropoulos P, Maranta R et al (2013b) Genetic screening in adolescents with steroid-resistant nephrotic syndrome. Kidney Int 84:206–213. https://doi.org/10.1038/ki.2013.93 Łukomska A, Menkiszak J, Gronwald J et al (2014) Recurrent mutations in BRCA1, BRCA2, RAD51C, PALB2 and CHEK2 in Polish patients with ovarian cancer. Cancers (basel) 13:849. https://doi.org/10.3390/cancers13040849 Machackova E, Foretova L, Lukesova M et al (2008) Spectrum and characterisation of BRCA1 and BRCA2 deleterious mutations in high-risk Czech patients with breast and/or ovarian cancer. BMC Cancer 8:140. https://doi.org/10.1186/1471-2407-8-140 Machuca E, Hummel A, Nevo F et al (2009) Clinical and epidemiological assessment of steroid-resistant nephrotic syndrome associated with the NPHS2 R229Q variant. Kidney Int 75:727–735. https://doi.org/10.1038/ki.2008.650 Malyarchuk BA, Grzybowski T, Derenko MV et al (2002) Mitochondrial DNA variability in Poles and Russians. Ann Hum Genet 66:261–283. https://doi.org/10.1017/S0003480002001161 Maryanski A (1998) Narodowości świata. Wydawnictwo Naukowe PWN, Warszawa McCarthy HJ, Bierzynska A et al (2013) Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. CJASN 8(4):637–648. https://doi.org/10.2215/CJN.07200712 Megremis S, Mitsioni A, Mitsioni AG et al (2009) Nucleotide variations in the NPHS2 gene in Greek children with steroid-resistant nephrotic syndrome. Genet Test Mol Biomarkers 13:249–256. https://doi.org/10.1089/gtmb.2008.0083 Meindl A (2002) Comprehensive analysis of 989 patients with breast or ovarian cancer provides BRCA1 and BRCA2 mutation profiles and frequencies for the German population. Int J Cancer 97:472–480. https://doi.org/10.1002/ijc.1626 Mickiewicz A, Chmara M, Futema M et al (2016) Efficacy of clinical diagnostic criteria for familial hypercholesterolemia genetic testing in Poland. Atherosclerosis 249:52–58. https://doi.org/10.1016/j.atherosclerosis.2016.03.025 Mielnik-Sikorska M, Daca P, Malyarchuk B et al (2013) The history of Slavs inferred from complete mitochondrial genome sequences. PLoS ONE 8:e54360. https://doi.org/10.1371/journal.pone.0054360 Mordawski J (1999) Geografia współczesnych Kaszub [in:] Historia, geografia, jezyk i pismiennictwo Kaszubow. Gdansk: Ed. M Rozak: Instytut Kaszubski; See also http://pl.kaszubia.com/kaszuby/geografia/mordawski/. Mordawski L. (2017) Atlas dziejów Pomorza i jego mieszkańców – Kaszubów. Zrzeszenie Kaszubsko-Pomorskie. https://static.epodreczniki.pl/portal/f/res/R1Eefflk6yh5L/1611742971/1jrF4rGjDz1zbGvNx5renqDajoKn88L4.pdf Nedoszytko B, Sieminska A, Strapagiel B, et al. (2017) High prevalence of carriers of variant c.1528G>C of HADHA gene causing long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) in the population of adult Kashubians from North Poland. PLOS One 12: e.0187365. https://doi.org/10.1371/journal.pone.0187365. Obracht-Prondzyński C (2020) Z Pomorza w świat, ze świata na Pomorze. O ruchach migracyjnych w krainie gryfa (przebieg – skutki – wyobrażenia). From Pomerania to the World, from the World to Pomerania. On Migration Movements in the “Griffin Land” (Course – Effects – Images). Polski Przegląd Migracyjny/The Polish Migration Review 7:86–113 Obracht-Prondzyński C & Wicherkiewicz T. (2012) The Kashubs: past and present. Edited Collection VIII, 1–299. Science, Society & Culture. Pang J, Sullivan DR, Brett T et al (2020) Familial hypercholesterolaemia in 2020: a leading tier 1 genomic application. Heart Lung Circ 29:619–633. https://doi.org/10.1016/j.hlc.2019.12.002 Perkowska M, Brożek I, Wysocka B et al (2003) BRCA1 and BRCA2 mutation analysis in breast-ovarian cancer families from northeastern Poland. Hum Mutat 21:553–554. https://doi.org/10.1002/humu.9139 Piekutowska-Abramczuk D, Olsen RKJ, Wierzba J et al (2010) A comprehensive HADHA c.1528G>C frequency study reveals high prevalence of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency in Poland. J Inherit Metab Dis 33:373–377. https://doi.org/10.1007/s10545-010-9190-7 Plewa R, Luczak M, Burchardt P et al (2006) Monogenic hypercholesterolaemias – an evaluation of apolipoprotein B100 and LDL receptor gene polymorphisms. Kardiol Pol 64:127–133 Płoski R, Woźniak M, Pawłowski R et al (2002) Homogeneity and distinctiveness of Polish paternal lineages revealed by Y chromosome microsatellite haplotype analysis. Hum Genet 110:592–600. https://doi.org/10.1007/s00439-002-0728-0 Prohaska A, Racimo F, Schork AJ et al (2019) Human disease variation in the light of population genomics. Cell 177:115–131. https://doi.org/10.1016/j.cell.2019.01.052 Przeworski M, Hudson RR, Di Rienzo A (2000) Adjusting the focus on human variation. Trends Genet 16:296–302. https://doi.org/10.1016/s0168-9525(00)02030-8 Ratajska M, Brożek I, Senkus-Konefka E et al (2008) BRCA1 and BRCA2 point mutations and large rearrangements in breast and ovarian cancer families in Northern Poland. Oncol Rep 19:263–268 Rębała K, Martínez-Cruz B, Tonjes A et al (2013) Contemporary paternal genetic landscape of Polish and German populations: from early medieval Slavic expansion to post-World War II resettlements. Eur J Hum Genet 21:415–422. https://doi.org/10.1038/ejhg.2012.190 Rebbeck TR, Friebel TM, Friedman E et al (2018) Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum Mutat 39:593–620. https://doi.org/10.1002/humu.23406 Ruf RG, Lichtenberger A, Karle SM et al (2004) Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 15:722–732. https://doi.org/10.1097/01.asn.0000113552.59155.72 Rukavina AS, Topic RZ, Ferencak G, Sucic M (2001) A novel missense mutation C172R (FH Zagreb) in the LDL-receptor gene. Clin Chem Lab Med 39:505–508. https://doi.org/10.1515/CCLM.2001.084 Schmidt H, Kostner GM (2000) Familial hypercholesterolemia in Austria reflects the multi-ethnic origin of our country. Atherosclerosis 148:431–432. https://doi.org/10.1016/s0021-9150(99)00469-4 Schmidt AH, Solloch UV, Pingel J et al (2013) Regional HLA differences in Poland and their effect on stem cell donor registry planning. PLoS ONE 8:e73835. https://doi.org/10.1371/journal.pone.0073835 Sharifi M, Walus-Miarka M, Idzior-Walus B et al (2016) The genetic spectrum of familial hypercholesterolemia in south-eastern Poland. Metabolism 65:48–53. https://doi.org/10.1016/j.metabol.2015.10.018 Sijbrands EJG, Westendorp RGJ, Defeche JC et al (2001) Mortality over two centuries in large pedigree with familial hypercholesterolemia: family tree mortality study. Br Med J 332:1019–1023. https://doi.org/10.1136/bmj.322.7293.1019 Sims HF, Brackett JC, Powell CK et al (1995) The molecular basis of pediatric long chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with maternal acute fatty liver of pregnancy. Proc Natl Acad Sci U S A 92:841–845. https://doi.org/10.1073/pnas.92.3.841 Sołtyszewski I, Płócienniczak A, Fabricius HA et al (2008) Analysis of forensically used autosomal short tandem repeat markers in Polish and neighboring populations. Forensic Sci Int Genet 2:205–211. https://doi.org/10.1016/j.fsigen.2008.02.003 Struewing JP, Hartge P, Wacholder S et al (1997) The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 336:1401–1408. https://doi.org/10.1056/NEJM199705153362001 Sykut-Cegielska J, Gradowska W, Piekutowska-Abramczuk D et al (2011) Urgent metabolic service improves survival in long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency detected by symptomatic identification and pilot newborn screening. J Inherit Metab Dis 34:185–195. https://doi.org/10.1007/s10545-010-9244-x Szwiec M, Jakubowska A, Gorski B et al (2014) Recurrent mutations of BRCA1 and BRCA2 in Poland: an update. Clin Genet 87:288–292. https://doi.org/10.1111/cge.12360 Trautmann A, Schnaidt S, Lipska-Ziętkiewicz BS et al (2017) Long-term outcome of steroid-resistant nephrotic syndrome in children. J Am Soc Nephrol 28:3055–3065. https://doi.org/10.1681/ASN.2016101121 Trautmann A, Vivarelli M, Samuel S et al (2020) IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 35(8):1529–1561. https://doi.org/10.1007/s00467-020-04519-1 Tyni T, Pihko H (1999) Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Acta Paediatr 88:237–245. https://doi.org/10.1111/j.1651-2227.1999.tb01089.x Veeramah KR, Novembre J (2014) Demographic events and evolutionary forces shaping European genetic diversity. Cold Spring Harb Perspect Biol 6:a008516 Weber S, Gribouval O, Esquivel EL et al (2004) NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int 66:571–579. https://doi.org/10.1111/j.1523-1755.2004.00776.x Witt M, Reis A, Cichy W, Dziechciowska K (1996) Microsatellite haplotypes of Polish cystic fibrosis alleles: delta F508 chromosomes demonstrate a North-South haplotype frequency gradient. Hum Hered 46:310–314. https://doi.org/10.1159/000154370 Wójcik P, Jasiowka M, Strycharz E et al (2016) Recurrent mutations of BRCA1, BRCA2 and PALB2 in the population of breast and ovarian cancer patients in Southern Poland. Heredit Cancer Clin Pract 14:5. https://doi.org/10.1186/s13053-016-0046-5 Yotova V, Labuda D, Ziętkiewicz E et al (2005) Anatomy of a founder effect: myotonic dystrophy in Northeastern Quebec. Hum Genet 117:177–187. https://doi.org/10.1007/s00439-005-1298-8 Youngblom E, Pariani M, Knowles JW (1993) Familial hypercholesterolemia. In: Adam MP, Ardinger HH, Pagon RA, et al (eds). Seattle (WA)