Optimal time-decay estimates for an Oldroyd-B model with zero viscosity

Journal of Differential Equations - Tập 306 - Trang 456-491 - 2022
Jinrui Huang1, Yinghui Wang2, Huanyao Wen2, Ruizhao Zi3
1School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China
2School of Mathematics, South China University of Technology, Guangzhou, 510641, China
3School of Mathematics and Statistics, Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, China

Tài liệu tham khảo

Barrett, 2011, Existence and approximation of a (regularized) Oldroyd-B model, Math. Models Methods Appl. Sci., 21, 1783, 10.1142/S0218202511005581 Barrett, 2017, Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model, Commun. Math. Sci., 15, 1265, 10.4310/CMS.2017.v15.n5.a5 Barrett, 2011, Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: finitely extensible nonlinear bead-spring chains, Math. Models Methods Appl. Sci., 21, 1211, 10.1142/S0218202511005313 Barrett, 2018, Existence of global weak solutions to the kinetic Hookean dumbbell model for incompressible dilute polymeric fluids, Nonlinear Anal., Real World Appl., 39, 362, 10.1016/j.nonrwa.2017.07.012 Bathory, 2021, Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion, Adv. Nonlinear Anal., 10, 501, 10.1515/anona-2020-0144 Bhave, 1991, Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions, J. Chem. Phys., 95, 2988, 10.1063/1.460900 Bhave, 1993, A constitutive equation for liquid-crystalline polymer solutions, J. Rheol., 37, 413, 10.1122/1.550452 Boyaval, 2009, Free-energy-dissipative schemes for the Oldroyd-B model, M2AN Math. Model. Numer. Anal., 43, 523, 10.1051/m2an/2009008 Cai, 2019, Vanishing viscosity limit for incompressible viscoelasticity in two dimensions, Commun. Pure Appl. Math., 72, 2063, 10.1002/cpa.21853 Cates, 2006, Rheology of giant micelles, Adv. Phys., 55, 799, 10.1080/00018730601082029 Chen, 2008, Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces, Nonlinear Anal., 68, 1928, 10.1016/j.na.2007.01.042 Chupin, 2017, Viscoelastic flows in a rough channel: amultiscale analysis, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 34, 483, 10.1016/j.anihpc.2016.01.002 Constantin, 2012, Note on global regularity for two dimensional Oldroyd-B fluids stress, Arch. Ration. Mech. Anal., 206, 725, 10.1007/s00205-012-0537-0 Constantin Dhont, 2008, Gradient and vorticity banding, Rheol. Acta, 47, 257, 10.1007/s00397-007-0245-0 Dostalík, 2020, Unconditional finite amplitude stability of a viscoelastic fluid in a mechanically isolated vessel with spatially non-uniform wall temperature, Math. Comput. Simul. E, 2004, Well-posedness for the dumbbell model of polymeric fluids, Commun. Math. Phys., 248, 409, 10.1007/s00220-004-1102-y Elgindi, 2015, Global wellposedness to the generalized Oldroyd type models in R3, J. Differ. Equ., 259, 1958, 10.1016/j.jde.2015.03.026 Elgindi, 2015, Global regularity for some Oldroyd-B type models, Commun. Pure Appl. Math., 68, 2005, 10.1002/cpa.21563 El-Kareh, 1989, Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion, J. Non-Newton. Fluid Mech., 33, 257, 10.1016/0377-0257(89)80002-3 Fang, 2013, Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters, Math. Ann., 357, 687, 10.1007/s00208-013-0914-5 Fang, 2016, Global solutions to the Oldroyd-B model with a class of large initial data, SIAM J. Math. Anal., 48, 1054, 10.1137/15M1037020 Fernández-Cara, 1998, Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind, Ann. Sc. Norm. Super. Pisa, 26, 1 Guillopé, 1990, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., Theory Methods Appl., 15, 849, 10.1016/0362-546X(90)90097-Z Hall, 2015, Lie Groups, Lie Algebras, and Representations, An Elementary Introduction Hieber, 2012, Global existence results for Oldroyd-B fluids in exterior domains, J. Differ. Equ., 252, 2617, 10.1016/j.jde.2011.09.001 Hieber, 2019, Optimal decay rates for solutions to the incompressible Oldryod-B model in R3, Nonlinearity, 32, 833, 10.1088/1361-6544/aaeec7 Hu, 2007, New entropy estimates for Oldroyd-B and related models, Commun. Math. Sci., 5, 909, 10.4310/CMS.2007.v5.n4.a9 Hu, 2016, Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data, Commun. Pure Appl. Math., LXIX Hu, 2015, Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows, Discrete Contin. Dyn. Syst., 35, 3437, 10.3934/dcds.2015.35.3437 Hu, 2013, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows, SIAM J. Math. Anal., 45, 2815, 10.1137/120892350 Kawashima, 1983 La, 2020, On diffusive 2D Fokker-Planck-Navier-Stokes systems, Arch. Ration. Mech. Anal., 235, 1531, 10.1007/s00205-019-01450-0 Lai, 2017, Forward self-similar solutions to the viscoelastic Navier-Stokes equation with damping, SIAM J. Math. Anal., 49, 501, 10.1137/16M1060340 Lei, 2010, On 2D viscoelasticity with small strain, Arch. Ration. Mech. Anal., 198, 13, 10.1007/s00205-010-0346-2 Lei, 2008, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188, 371, 10.1007/s00205-007-0089-x Lin, 2012, Some analytical issues for elastic complex fluids, Commun. Pure Appl. Math., 65, 893, 10.1002/cpa.21402 Lin, 2005, On hydrodynamics of viscoelastic fluids, Commun. Pure Appl. Math., 58, 1437, 10.1002/cpa.20074 Lin, 2008, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Commun. Pure Appl. Math., 61, 539, 10.1002/cpa.20219 Lions, 2000, Global solutions for some Oldroyd models of non-Newtonian flows, Chin. Ann. Math., Ser. B, 21, 131, 10.1142/S0252959900000170 Liu, 1993, Free energy functionals for semiflexible polymer solutions and blends, Macromolecules, 26, 2817, 10.1021/ma00063a028 Lu, 2018, Relative entropy, weak-strong uniqueness and conditional regularity for a compressible Oldroyd-B model, SIAM J. Math. Anal., 50, 557, 10.1137/17M1128654 Málek, 2018, Thermodynamics of viscoelastic rate-type fluids with stress diffusion, Phys. Fluids, 30, 10.1063/1.5018172 Molinet, 2004, On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nonlinear Differ. Equ. Appl., 11, 349, 10.1007/s00030-004-1073-x Oldroyd, 1958, Non-Newtonian effects in steady motion of some idealized elasticoviscous liquids, Proc. R. Soc. Edinb., Sect. A, 245, 278 Rajagopal, 2000, A thermodynamic frame work for rate type fluid models, J. Non-Newton. Fluid Mech., 88, 207, 10.1016/S0377-0257(99)00023-3 Schonbek, 1985, L2 decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88, 209, 10.1007/BF00752111 Schonbek, 1986, Large time behavior of solutions to the Navier-Stokes equations, Commun. Partial Differ. Equ., 11, 753, 10.1080/03605308608820443 Wang, 2020, The Cauchy problem for an Oldroyd-B model in three dimensions, Math. Models Methods Appl. Sci., 30, 139, 10.1142/S0218202520500049 Zhang, 2012, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical Lp framework, SIAM J. Math. Anal., 44, 2266, 10.1137/110851742 Zhu, 2018, Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism, J. Funct. Anal., 274, 2039, 10.1016/j.jfa.2017.09.002 Zi, 2014, Global solution to the incompressible Oldroyd-B model in the critical Lp framework: the case of the non-small coupling parameter, Arch. Ration. Mech. Anal., 213, 651, 10.1007/s00205-014-0732-2 Ziegler, 1987, The derivation of constitutive relations from the free energy and the dissipation function, Adv. Appl. Mech., 25, 183, 10.1016/S0065-2156(08)70278-3