Modeling of particle-laden flows with n-sided polygonal smoothed finite element method and discrete phase model
Tài liệu tham khảo
Crowe, 2012
Kosinski, 2009, Simulation of solid particles behaviour in a driven cavity flow, Powder Technol., 191, 327, 10.1016/j.powtec.2008.10.025
Safdari, 2015, Lattice Boltzmann simulation of the three-dimensional motions of particles with various density ratios in lid-driven cavity flow, Appl. Math. Comput., 265, 826, 10.1016/j.amc.2015.05.106
Lin, 2022, A numerical study of particle-laden flow around an obstacle: flow evolution and Stokes number effects, Appl. Math. Model., 103, 287, 10.1016/j.apm.2021.10.022
Zienkiewicz, 2014
Liu, 2007, A smoothed finite element method for mechanics problems, Comput. Mech., 39, 859, 10.1007/s00466-006-0075-4
Liu, 2010
Zienkiewicz, 1995, A general algorithm for compressible and incompressible flow-Part I. the split, characteristic-based scheme, Int. J. Numer. Methods Fluids, 20, 869, 10.1002/fld.1650200812
Sukumar, 2004, Conforming polygonal finite elements, Int. J. Numer. Methods Eng., 61, 2045, 10.1002/nme.1141
Talischi, 2010, Polygonal finite elements for topology optimization: a unifying paradigm, Int. J. Numer. Methods Eng., 82, 671, 10.1002/nme.2763
Talischi, 2014, Polygonal finite elements for incompressible fluid flow, Int. J. Numer. Methods Fluids, 74, 134, 10.1002/fld.3843
Nguyen-Xuan, 2016, A polytree-based adaptive approach to limit analysis of cracked structures, Comput. Methods Appl. Mech. Eng., 313, 1006, 10.1016/j.cma.2016.09.016
Wang, 2023, Numerical study on slipstream-induced snow drifting and accumulation in the bogie region of a high-speed train passing the snowy ballast bed, J. Wind Energy Ind. Aerodyn., 232
Sukumar, 2006, Recent advances in the construction of polygonal finite element interpolants, Arch. Comput. Methods Eng., 13, 129, 10.1007/BF02905933
Perumal, 2018, A brief review on polygonal/polyhedral finite element methods, Math. Probl. Eng., 1, 10.1155/2018/5792372
Wachspress, 1971, A rational basis for function approximation, IMA J. Appl. Math., 8, 57, 10.1093/imamat/8.1.57
Wachspress, 1975, A rational finite element basis, J. Lubr. Technol., 98, 635, 10.1115/1.3452953
Floater, 2003, Mean value coordinates, Comput. Aided Geom. Des., 20, 19, 10.1016/S0167-8396(03)00002-5
Floater, 2005, Mean value coordinates in 3D, Comput. Aided Geom. Des., 22, 623, 10.1016/j.cagd.2005.06.004
Sukumar, 2004, Construction of polygonal interpolants: a maximum entropy approach, Int. J. Numer. Methods Eng., 61, 10.1002/nme.1193
Hormann, 2008, Maximum entropy coordinates for arbitrary polytopes, Comput. Graph. Forum, 27, 10.1111/j.1467-8659.2008.01292.x
Martin, 2008, Polyhedral finite elements using harmonic basis functions, Comput. Graph. Forum, 27, 1521, 10.1111/j.1467-8659.2008.01293.x
Bishop, 2014, A displacement-based finite element formulation for general polyhedra using harmonic shape functions, Int. J. Numer. Methods Eng., 97, 1, 10.1002/nme.4562
Song, 1997, The scaled boundary finite-element method—Alias consistent infinitesimal finite-element cell method-for elastodynamics, Comput. Methods Appl. Mech. Eng., 147, 329, 10.1016/S0045-7825(97)00021-2
Song, 2018
Ghosh, 1993, A material based finite element analysis of heterogeneous media involving Dirichlet tessellations, Comput. Methods Appl. Mech. Eng., 104, 211, 10.1016/0045-7825(93)90198-7
Ghosh, 1995, Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method, Comput. Methods Appl. Mech. Eng., 121, 373, 10.1016/0045-7825(94)00687-I
Wriggers, 2020, A virtual element formulation for general element shapes, Comput. Mech., 66, 963, 10.1007/s00466-020-01891-5
Beirão da Veiga, 2015, A Virtual Element Method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Eng., 295, 327, 10.1016/j.cma.2015.07.013
Dai, 2007, An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics, Finite Elem. Anal. Des., 43, 847, 10.1016/j.finel.2007.05.009
Nguyen-Thoi, 2010, An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics, Int. J. Numer. Methods Biomed. Eng., 27, 1446, 10.1002/cnm.1375
Nguyen-Thoi, 2013, Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM), Int. J. Comput. Methods, 10, 10.1142/S0219876213400082
Liu, 2007, Theoretical aspects of the smoothed finite element method (SFEM), Int. J. Numer. Methods Eng., 71, 902, 10.1002/nme.1968
Liu, 2009, A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. Struct., 87, 14, 10.1016/j.compstruc.2008.09.003
Nguyen-Thoi, 2014, A smoothed coupled NS/nES-FEM for dynamic analysis of 2D fluid–solid interaction problems, Appl. Math. Comput., 232, 324, 10.1016/j.amc.2014.01.052
Nguyen-Thoi, 2009, Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems, Int. J. Comput. Methods, 06, 633, 10.1142/S0219876209001954
Liu, 2010, A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems, Int. J. Numer. Methods Eng., 83, 1466, 10.1002/nme.2868
Nguyen-Thoi, 2010, A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput. Methods Appl. Mech. Eng., 199, 3005, 10.1016/j.cma.2010.06.017
He, 2022, An edge-based smoothed finite element framework for partitioned simulation of vortex-induced vibration problems, Int. J. Numer. Methods Fluids, 94, 1863, 10.1002/fld.5130
Wang, 2022, An immersed edge-based smoothed finite element method with the stabilized pressure gradient projection for fluid–structure interaction, Comput. Struct., 270, 10.1016/j.compstruc.2022.106833
Liu, 2009, An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, J. Sound Vib., 320, 1100, 10.1016/j.jsv.2008.08.027
Nguyen-Xuan, 2009, An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures, Smart Mater. Struct., 18, 10.1088/0964-1726/18/6/065015
Nguyen-Thoi, 2009, An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh, Comput. Mech., 45, 23, 10.1007/s00466-009-0415-2
Nguyen-Thoi, 2009, A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements, Int. J. Numer. Methods Eng., 78, 324, 10.1002/nme.2491
Nguyen-Thoi, 2009, A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh, Comput. Methods Appl. Mech. Eng., 198, 3479, 10.1016/j.cma.2009.07.001
Lee, 2017, Polyhedral elements by means of node/edge-based smoothed finite element method, Int. J. Numer. Methods Eng., 110, 1069, 10.1002/nme.5449
Lee, 2017, Polyhedral elements using an edge-based smoothed finite element method for nonlinear elastic deformations of compressible and nearly incompressible materials, Comput. Mech., 60, 659, 10.1007/s00466-017-1433-0
Kim, 2017, Polyhedral smoothed finite element method for thermoelastic analysis, J. Mech. Sci. Technol., 31, 5937, 10.1007/s12206-017-1138-5
Kim, 2017, Polygonal type variable-node elements by means of the smoothed finite element method for analysis of two-dimensional fluid-solid interaction problems in viscous incompressible flows, Comput. Struct., 182, 475, 10.1016/j.compstruc.2017.01.006
Kim, 2018, The surrounding cell method based on the S-FEM for analysis of FSI problems dealing with an immersed solid, Comput. Methods Appl. Mech. Eng., 341, 658, 10.1016/j.cma.2018.07.016
Lim, 2010, Variable-node finite elements with smoothed integration techniques and their applications for multiscale mechanics problems, Comput. Struct., 88, 413, 10.1016/j.compstruc.2009.12.004
Li, 2020, N-sided polygonal smoothed finite element method (nSFEM) with non-matching meshes and their applications for brittle fracture problems, Comput. Methods Appl. Mech. Eng., 359, 10.1016/j.cma.2019.112672
Peng, 2022, Quadtree-polygonal smoothed finite element method for adaptive brittle fracture problems, Eng. Anal. Bound. Elem., 134, 491, 10.1016/j.enganabound.2021.10.019
Huo, 2020, A smoothed finite element method for octree-based polyhedral meshes with large number of hanging nodes and irregular elements, Comput. Methods Appl. Mech. Eng., 359, 10.1016/j.cma.2019.112646
Wu, 2022, An n-sided polygonal selective smoothed finite element method for nearly incompressible visco-hyperelastic soft materials, Appl. Math. Model., 107, 398, 10.1016/j.apm.2022.02.026
Liu, 2021, A cell-based smoothed finite element method for arbitrary polygonal element to solve incompressible laminar flow, Int. J. Comput. Methods, 18, 10.1142/S0219876221500171
Tsuji, 1993, Discrete particle simulation of two-dimensional fluidized bed, Powder Technol., 77, 79, 10.1016/0032-5910(93)85010-7
Wang, 2017, Parallel LES-DEM simulation of dense flows in fluidized beds, Appl. Therm. Eng., 111, 1523, 10.1016/j.applthermaleng.2016.07.161
Kong, 2021, Particle behaviours of biomass gasification in a bubbling fluidized bed, Chem. Eng. J., 428
Kuang, 2020, CFD-DEM modelling and simulation of pneumatic conveying: a review, Powder Technol., 365, 186, 10.1016/j.powtec.2019.02.011
Patankar, 2001, Modeling and numerical simulation of particulate flows by the Eulerian-Lagrangian approach, Int. J. Multiph. Flow, 27, 1659, 10.1016/S0301-9322(01)00021-0
He, 2019, Insight into the cell-based smoothed finite element method for convection-dominated flows, Comput. Struct., 212, 215, 10.1016/j.compstruc.2018.10.021
He, 2022, Modeling fluid–structure interaction with the edge-based smoothed finite element method, J. Comput. Phys., 460, 10.1016/j.jcp.2022.111171
Jiang, 2018, A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows, Int. J. Numer. Methods Fluids, 86, 20, 10.1002/fld.4406
Hormann, 2006, Mean value coordinates for arbitrary planar polygons, ACM Trans. Graph., 25, 1424, 10.1145/1183287.1183295
Chi, 2015, Polygonal finite elements for finite elasticity, Int. J. Numer. Methods Eng., 101, 305, 10.1002/nme.4802
Jiang, 2020, Novel displacement function for discontinuous deformation analysis based on mean value coordinates, Int. J. Numer. Methods Eng., 121, 4768, 10.1002/nme.6491
Wang, 2022, A coupled cell-based smoothed finite element method and discrete phase model for incompressible laminar flow with dilute solid particles, Eng. Anal. Bound. Elem., 143, 190, 10.1016/j.enganabound.2022.05.014
Morsi, 1972, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech., 55, 193, 10.1017/S0022112072001806
2011
Taylor, 1937, Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. Ser. Math. Phys. Sci., 158, 499
Aulisa, 2003, A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows, J. Comput. Phys., 188, 611, 10.1016/S0021-9991(03)00196-7
Scardovelli, 2003, Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection, Int. J. Numer. Methods Fluids, 41, 251, 10.1002/fld.431
Capodaglio, 2017, A particle tracking algorithm for parallel finite element applications, Comput. Fluids, 159, 338, 10.1016/j.compfluid.2017.10.015
Ghia, 1982, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387, 10.1016/0021-9991(82)90058-4
He, 2022, A stabilized cell-based smoothed finite element method against severe mesh distortion in non-Newtonian fluid–structure interaction, Int. J. Numer. Methods Eng., 123, 2162, 10.1002/nme.6930
Tsorng, 2006, Three-dimensional tracking of the long time trajectories of suspended particles in a lid-driven cavity flow, Exp. Fluids, 40, 314, 10.1007/s00348-005-0070-0
Erturk, 2008, Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: high Reynolds number solutions, Comput. Fluids, 37, 633, 10.1016/j.compfluid.2007.09.003
Guj, 1988, Numerical solutions of high-Re recirculating flows in vorticity-velocity form, Int. J. Numer. Methods Fluids, 8, 405, 10.1002/fld.1650080404
Liu, 2021, A cell-based smoothed finite element method stabilized by implicit SUPG/SPGP/Fractional step method for incompressible flow, Eng. Anal. Bound. Elem., 124, 194, 10.1016/j.enganabound.2020.12.018
Shi, 2021, Clusters and coherent voids in particle-laden wake flow, Int. J. Multiph. Flow, 141, 10.1016/j.ijmultiphaseflow.2021.103678
Shi, 2020, Bow shock clustering in particle-laden wetted cylinder flow, Int. J. Multiph. Flow, 130, 10.1016/j.ijmultiphaseflow.2020.103332
Haddadi, 2014, Suspension flow past a cylinder: particle interactions with recirculating wakes, J. Fluid Mech., 760, R2, 10.1017/jfm.2014.613
Luo, 2009, Transient, three-dimensional simulation of particle dispersion in flows around a circular cylinder Re=140–260), Fuel, 88, 1294, 10.1016/j.fuel.2008.12.026
Zhou, 2011, Numerical investigation of dispersed gas–solid two-phase flow around a circular cylinder using lattice Boltzmann method, Comput. Fluids, 52, 130, 10.1016/j.compfluid.2011.09.007
John, 2002, Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier-Stokes equations, Int. J. Numer. Methods Fluids, 40, 775, 10.1002/fld.377
Mollicone, 2019, Particles in turbulent separated flow over a bump: effect of the Stokes number and lift force, Phys. Fluids, 31, 10.1063/1.5119103
Afrouzi, 2015, Lattice Boltzmann analysis of micro-particles transport in pulsating obstructed channel flow, Comput. Math. Appl., 70, 1136, 10.1016/j.camwa.2015.07.008
Zargartalebi, 2019, Flow dynamics and heat transfer in partially porous microchannel heat sinks, J. Fluid Mech., 875, 1035, 10.1017/jfm.2019.491
Zargartalebi, 2020, The impact of heterogeneous pin based micro-structures on flow dynamics and heat transfer in micro-scale heat exchangers, Phys. Fluids, 32, 10.1063/5.0006577