A texton-based kernel density estimation approach for background modeling under extreme conditions

Computer Vision and Image Understanding - Tập 122 - Trang 74-83 - 2014
C. Spampinato1, S. Palazzo1, I. Kavasidis1
1Department of Electrical, Electronics and Computer Engineering, University of Catania, Viale Andrea Doria 6, Catania, Italy

Tài liệu tham khảo

Stauffer, 1999, Adaptive background mixture models for real-time tracking, IEEE Comput. Soc. Conf. Comput. Vis. Patt. Recogn., 2, 246 Sheikh, 2005, Bayesian modeling of dynamic scenes for object detection, IEEE Trans. Patt. Anal. Mach. Intell., 27, 1778, 10.1109/TPAMI.2005.213 Spampinato, 2012, Understanding fish behavior during typhoon events in real-life underwater environments, Multim. Tools Appl., 10.1007/s11042-012-1101-5 Zhang, 2011, Kernel similarity modeling of texture pattern flow for motion detection in complex background, IEEE Trans. Circ. Syst. Video Technol., 21, 29, 10.1109/TCSVT.2011.2105591 C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, Pfinder: real-time tracking of the human body, in: Automatic Face and Gesture Recognition, 1996., Proceedings of the Second International Conference on, 1996, pp. 51–56, doi:10.1109/AFGR.1996.557243. Zivkovic, 2006, Efficient adaptive density estimation per image pixel for the task of background subtraction, Patt. Recogn. Lett., 27, 773, 10.1016/j.patrec.2005.11.005 Lee, 2005, Effective gaussian mixture learning for video background subtraction, Patt. Anal. Mach. Intell. IEEE Trans., 27, 827, 10.1109/TPAMI.2005.102 A. Mittal, N. Paragios, Motion-based background subtraction using adaptive kernel density estimation, in: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, vol. 2, 2004, pp. II–302–II–309 vol. 2, doi:10.1109/CVPR.2004.1315179. Barnich, 2011, ViBe: a universal background subtraction algorithm for video sequences, IEEE Trans. Image Process., 20, 1709, 10.1109/TIP.2010.2101613 Han, 2012, Density-based multifeature background subtraction with support vector machine, IEEE Trans. Patt. Anal. Mach. Intell., 34, 1017, 10.1109/TPAMI.2011.243 Heikkila, 2006, A texture-based method for modeling the background and detecting moving objects, IEEE Trans. Patt. Anal. Mach. Intell., 28, 657, 10.1109/TPAMI.2006.68 S. Liao, G. Zhao, V. Kellokumpu, M. Pietikainen, S. Li, Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 1301–1306, doi:10.1109/CVPR.2010.5539817. A. Monnet, A. Mittal, N. Paragios, V. Ramesh, Background modeling and subtraction of dynamic scenes, in: Proceedings of the Ninth IEEE International Conference on Computer Vision – vol. 2, ICCV ’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 1305. J. Gallego, M. Pardas, G. Haro, Bayesian foreground segmentation and tracking using pixel-wise background model and region based foreground model, in: Image Processing (ICIP), 2009 16th IEEE International Conference on, 2009, pp. 3205–3208, doi:10.1109/ICIP.2009.5414380. M. Seki, T. Wada, H. Fujiwara, K. Sumi, Background subtraction based on cooccurrence of image variations, in: Computer Vision and Pattern Recognition, 2003. Proceedings, 2003 IEEE Computer Society Conference on, vol. 2, 2003, pp. II–65–II–72 vol. 2, doi:10.1109/CVPR.2003.1211453. Tsai, 2009, Independent component analysis-based background subtraction for indoor surveillance, IEEE Trans. Image Process., 18, 158, 10.1109/TIP.2008.2007558 S. Raimondo, C. Silvia, Underwater image processing: state of the art of restoration and image enhancement methods, EURASIP Journal on Advances in Signal Processing, 2010. Porikli, 2006, Achieving real-time object detection and tracking under extreme conditions, J. Real-Time Image Process., 1, 33, 10.1007/s11554-006-0011-z I. Kavasidis, S. Palazzo, Quantitative performance analysis of object detection algorithms on underwater video footage, in: Proceedings of the 1st ACM International Workshop on Multimedia Analysis for Ecological Data, ACM, 2012, pp. 57–60. Di Zenzo, 1986, A note on the gradient of a multi-image, Comput. Vis., Graph., Image Process., 33, 116, 10.1016/0734-189X(86)90223-9 B. Julesz, Textons, the elements of texture perception, and their interactions., Nature. Liu, 2008, Image retrieval based on the texton co-occurrence matrix, Patt. Recogn., 41, 3521, 10.1016/j.patcog.2008.06.010 Rosenblatt, 1956, Remarks on some nonparametric estimates of a density function, Ann. Mathemat. Stat., 27, 832, 10.1214/aoms/1177728190 Hall, 1996, On the accuracy of binned kernel density estimators, J. Multivar. Anal., 56, 165, 10.1006/jmva.1996.0009 L. Li, W. Huang, I.Y.H. Gu, Q. Tian, Foreground object detection from videos containing complex background, in: Proceedings of the Eleventh ACM International Conference on Multimedia MULTIMEDIA 03 03, 2003, pp. 2, doi:10.1145/957013.957017 http://portal.acm.org/citation.cfm?doid=957013.957017. A. Vacavant, T. Chateau, A. Wilhelm, L. Lequièvre, A benchmark dataset for foreground/background extraction, in: ACCV 2012/ Background Models Challenge, 2012. Heikkilä, 2009, Description of interest regions with local binary patterns, Patt. Recogn., 42, 425, 10.1016/j.patcog.2008.08.014 M. Narayana, A. Hanson, E. Learned-Miller, Background modeling using adaptive pixelwise kernel variances in a hybrid feature space, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2104–2111, doi:10.1109/CVPR.2012.6247916. Kavasidis, 2013, An innovative web-based collaborative platform for video annotation, Multim. Tools Appl., 1 C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking, in: Proceedings 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Cat No PR00149 2 (c), 1999, pp. 246–252. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?ar number=784637. Oliver, 2000, A bayesian computer vision system for modeling human interactions, IEEE Trans. Patt. Anal. Mach. Intell., 22, 831, 10.1109/34.868684 J. Yao, J.-M. Odobez, Multi-layer background subtraction based on color and texture, in: Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, IEEE, 2007, pp. 1–8. C. Lallier, E. Reynaud, L. Robinault, L. Tougne, A testing framework for background subtraction algorithms comparison in intrusion detection context Advanced Video and Signal Based Surveillance, IEEE Conference on 0, 2011, pp. 314–319, http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/AVSS.2011.6027343 doi:http://doi.ieeecomputersociety.org/10.1109/AVSS.2011.6027343. Wang, 2004, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13, 600, 10.1109/TIP.2003.819861 Liao, 2012, Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes, IEEE Conf. Comput. Vis. Patt. Recogn. (CVPR), 0, 1301