Stability of the planar rarefaction wave to three-dimensional full compressible Navier-Stokes-Korteweg equations
Tài liệu tham khảo
Anderson, 1998, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139, 10.1146/annurev.fluid.30.1.139
Cahn, 1998, Free energy of a nonuniform system I, interfacial free energy, J. Chem. Phys., 28, 258, 10.1063/1.1744102
Cai, 2015, Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type, Kinet. Relat. Models, 8, 29, 10.3934/krm.2015.8.29
Chen, 2007, Stability of rarefaction waves and vacuum states for the multidimensional Euler equations, J. Hyperbolic Differ. Equ., 4, 105, 10.1142/S0219891607001070
Chiodaroli, 2015, Global ill-posedness of the isentropic system of gas dynamics, Commun. Pure Appl. Math., 68, 1157, 10.1002/cpa.21537
Chen, 2017, Global smooth solutions to the nonisothermal compressible fluid models of Korteweg type with large initial data, Z. Angew. Math. Phys., 68, 10.1007/s00033-017-0822-8
Chen, 2019, Global stability of combination of a viscous contact wave with rarefaction waves for the compressible fluid models of Korteweg type, Nonlinearity, 32, 395, 10.1088/1361-6544/aaea89
Chen, 2013, Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type, Math. Methods Appl. Sci., 36, 2265, 10.1002/mma.2750
Chen, 2014, Convergence to the superposition of rarefaction waves and contact discontinuity for the 1-D compressible Navier-Stokes-Korteweg system, J. Math. Anal. Appl., 412, 646, 10.1016/j.jmaa.2013.10.073
Chen, 2014, Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system, J. Math. Pures Appl., 101, 330, 10.1016/j.matpur.2013.06.005
DeLellis, 2009, The Euler equations as a differential inclusion, Ann. Math., 170, 1417, 10.4007/annals.2009.170.1417
Dunn, 1985, On the thermodynamics of interstitial working, Arch. Ration. Mech. Anal., 88, 95, 10.1007/BF00250907
Feireisl, 2015, Uniqueness of rarefaction waves in multidimensional compressible Euler system, J. Hyperbolic Differ. Equ., 12, 489, 10.1142/S0219891615500149
Feireisl, 2015, Stability of the isentropic Riemann solution of the full multidimensional Euler system, SIAM J. Math. Anal., 47, 2416, 10.1137/140999827
Haspot, 2009, Existence of strong solutions for nonisothermal Korteweg system, Ann. Math. Blaise Pascal, 16, 431, 10.5802/ambp.274
Hattori, 1996, The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differ. Equ., 9, 323
Heida, 2010, On compressible Korteweg fluid-like materials, Int. J. Eng. Sci., 48, 1313, 10.1016/j.ijengsci.2010.06.031
Hokari, 1997, Asymptotics toward one-dimensional rarefaction wave for the solution of two dimensional compressible Euler equation with an artificial viscosity, Asymptot. Anal., 15, 283
Hou, 2018, Global well-posedness of the 3D non-isothermal compressible fluid model of Korteweg type, Nonlinear Anal., Real World Appl., 43, 18, 10.1016/j.nonrwa.2018.02.002
Hou, 2017, Vanishing capillarity limit of the compressible non-estropic Navier-Stokes-Korteweg system to the Navier-Stokes equations, J. Math. Anal. Appl., 448, 421, 10.1016/j.jmaa.2016.11.014
Ito, 1996, Asymptotic decay toward the planar rarefaction waves of solutions for viscous conservation laws in several space dimensional, Math. Models Methods Appl. Sci., 6, 315, 10.1142/S0218202596000109
Jiu, 2013, Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity, SIAM J. Math. Anal., 45, 3194, 10.1137/120879919
Korteweg, 1901, Sur la forme que prennent les équations des mouvement des fluids si l'on tient comple des forces capillaries par des variations de densité, Arch. Neerl. Sci. Exactes Nat., Ser. II, 6, 1
Kotschote, 2010, Strong well-posedness for a Korteweg type for the dynamics of a compressible non-isothermal fluid, J. Math. Fluid Mech., 12, 473, 10.1007/s00021-009-0298-1
Kotschote, 2012, Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg type, SIAM J. Math. Anal., 44, 74, 10.1137/110821202
Kotschote, 2014, Existence and time-asymptotics of global strong solutions to dynamic Korteweg models, Indiana Univ. Math. J., 63, 21, 10.1512/iumj.2014.63.5187
Lax, 1957, Hyperbolic systems of conservation laws II, Commun. Pure Appl. Math., 10, 537, 10.1002/cpa.3160100406
Li, 2018, Stability of the planar rarefaction wave to two-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 50, 4937, 10.1137/18M1171059
Li, 2018, Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 230, 911, 10.1007/s00205-018-1260-2
Li, 2015, The limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficients, Anal. Appl., 13, 555, 10.1142/S0219530514500456
Li, 2020, Stability of the planar rarefaction wave to two-dimensional Navier-Stokes-Korteweg equations of compressible fluids, Math. Methods Appl. Sci., 43, 3307, 10.1002/mma.6120
Li, 2021, Stability of the planar rarefaction wave to three-dimensional Navier-Stokes-Korteweg equations of compressible fluids, Nonlinearity, 34, 2689, 10.1088/1361-6544/abb544
Majda, 1984
Matsumura, 1992, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Commun. Math. Phys., 144, 325, 10.1007/BF02101095
Nishikawa, 2000, Asymptotics toward the planar rarefaction wave for viscous conservation law in two space dimensions, Trans. Am. Math. Soc., 352, 1203, 10.1090/S0002-9947-99-02290-4
Smoller, 1983
Sha, 2019, Low Mach number limit of the three-dimensional full compressible Navier-Stokes-Korteweg equations, Z. Angew. Math. Phys., 70, 169, 10.1007/s00033-019-1215-y
Xin, 1990, Asymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensions, Trans. Am. Math. Soc., 319, 805, 10.1090/S0002-9947-1990-0970270-8
Van der Waals, 1894, Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Z. Phys. Chem., 13, 657, 10.1515/zpch-1894-1338
Zhang, 2014, Decay estimates of the non-isentropic compressible fluid models of Korteweg type in R3, Commun. Math. Sci., 12, 1437, 10.4310/CMS.2014.v12.n8.a4