Stability of the planar rarefaction wave to three-dimensional full compressible Navier-Stokes-Korteweg equations

Journal of Differential Equations - Tập 327 - Trang 382-417 - 2022
Yeping Li1, Zhen Luo2
1School of Sciences, Nantong University, Nantong 226019, PR China
2School of Mathematical Sciences, Xiamen University, Xiamen, 361005, PR China

Tài liệu tham khảo

Anderson, 1998, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139, 10.1146/annurev.fluid.30.1.139 Cahn, 1998, Free energy of a nonuniform system I, interfacial free energy, J. Chem. Phys., 28, 258, 10.1063/1.1744102 Cai, 2015, Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type, Kinet. Relat. Models, 8, 29, 10.3934/krm.2015.8.29 Chen, 2007, Stability of rarefaction waves and vacuum states for the multidimensional Euler equations, J. Hyperbolic Differ. Equ., 4, 105, 10.1142/S0219891607001070 Chiodaroli, 2015, Global ill-posedness of the isentropic system of gas dynamics, Commun. Pure Appl. Math., 68, 1157, 10.1002/cpa.21537 Chen, 2017, Global smooth solutions to the nonisothermal compressible fluid models of Korteweg type with large initial data, Z. Angew. Math. Phys., 68, 10.1007/s00033-017-0822-8 Chen, 2019, Global stability of combination of a viscous contact wave with rarefaction waves for the compressible fluid models of Korteweg type, Nonlinearity, 32, 395, 10.1088/1361-6544/aaea89 Chen, 2013, Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type, Math. Methods Appl. Sci., 36, 2265, 10.1002/mma.2750 Chen, 2014, Convergence to the superposition of rarefaction waves and contact discontinuity for the 1-D compressible Navier-Stokes-Korteweg system, J. Math. Anal. Appl., 412, 646, 10.1016/j.jmaa.2013.10.073 Chen, 2014, Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system, J. Math. Pures Appl., 101, 330, 10.1016/j.matpur.2013.06.005 DeLellis, 2009, The Euler equations as a differential inclusion, Ann. Math., 170, 1417, 10.4007/annals.2009.170.1417 Dunn, 1985, On the thermodynamics of interstitial working, Arch. Ration. Mech. Anal., 88, 95, 10.1007/BF00250907 Feireisl, 2015, Uniqueness of rarefaction waves in multidimensional compressible Euler system, J. Hyperbolic Differ. Equ., 12, 489, 10.1142/S0219891615500149 Feireisl, 2015, Stability of the isentropic Riemann solution of the full multidimensional Euler system, SIAM J. Math. Anal., 47, 2416, 10.1137/140999827 Haspot, 2009, Existence of strong solutions for nonisothermal Korteweg system, Ann. Math. Blaise Pascal, 16, 431, 10.5802/ambp.274 Hattori, 1996, The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differ. Equ., 9, 323 Heida, 2010, On compressible Korteweg fluid-like materials, Int. J. Eng. Sci., 48, 1313, 10.1016/j.ijengsci.2010.06.031 Hokari, 1997, Asymptotics toward one-dimensional rarefaction wave for the solution of two dimensional compressible Euler equation with an artificial viscosity, Asymptot. Anal., 15, 283 Hou, 2018, Global well-posedness of the 3D non-isothermal compressible fluid model of Korteweg type, Nonlinear Anal., Real World Appl., 43, 18, 10.1016/j.nonrwa.2018.02.002 Hou, 2017, Vanishing capillarity limit of the compressible non-estropic Navier-Stokes-Korteweg system to the Navier-Stokes equations, J. Math. Anal. Appl., 448, 421, 10.1016/j.jmaa.2016.11.014 Ito, 1996, Asymptotic decay toward the planar rarefaction waves of solutions for viscous conservation laws in several space dimensional, Math. Models Methods Appl. Sci., 6, 315, 10.1142/S0218202596000109 Jiu, 2013, Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity, SIAM J. Math. Anal., 45, 3194, 10.1137/120879919 Korteweg, 1901, Sur la forme que prennent les équations des mouvement des fluids si l'on tient comple des forces capillaries par des variations de densité, Arch. Neerl. Sci. Exactes Nat., Ser. II, 6, 1 Kotschote, 2010, Strong well-posedness for a Korteweg type for the dynamics of a compressible non-isothermal fluid, J. Math. Fluid Mech., 12, 473, 10.1007/s00021-009-0298-1 Kotschote, 2012, Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg type, SIAM J. Math. Anal., 44, 74, 10.1137/110821202 Kotschote, 2014, Existence and time-asymptotics of global strong solutions to dynamic Korteweg models, Indiana Univ. Math. J., 63, 21, 10.1512/iumj.2014.63.5187 Lax, 1957, Hyperbolic systems of conservation laws II, Commun. Pure Appl. Math., 10, 537, 10.1002/cpa.3160100406 Li, 2018, Stability of the planar rarefaction wave to two-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 50, 4937, 10.1137/18M1171059 Li, 2018, Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 230, 911, 10.1007/s00205-018-1260-2 Li, 2015, The limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficients, Anal. Appl., 13, 555, 10.1142/S0219530514500456 Li, 2020, Stability of the planar rarefaction wave to two-dimensional Navier-Stokes-Korteweg equations of compressible fluids, Math. Methods Appl. Sci., 43, 3307, 10.1002/mma.6120 Li, 2021, Stability of the planar rarefaction wave to three-dimensional Navier-Stokes-Korteweg equations of compressible fluids, Nonlinearity, 34, 2689, 10.1088/1361-6544/abb544 Majda, 1984 Matsumura, 1992, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Commun. Math. Phys., 144, 325, 10.1007/BF02101095 Nishikawa, 2000, Asymptotics toward the planar rarefaction wave for viscous conservation law in two space dimensions, Trans. Am. Math. Soc., 352, 1203, 10.1090/S0002-9947-99-02290-4 Smoller, 1983 Sha, 2019, Low Mach number limit of the three-dimensional full compressible Navier-Stokes-Korteweg equations, Z. Angew. Math. Phys., 70, 169, 10.1007/s00033-019-1215-y Xin, 1990, Asymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensions, Trans. Am. Math. Soc., 319, 805, 10.1090/S0002-9947-1990-0970270-8 Van der Waals, 1894, Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Z. Phys. Chem., 13, 657, 10.1515/zpch-1894-1338 Zhang, 2014, Decay estimates of the non-isentropic compressible fluid models of Korteweg type in R3, Commun. Math. Sci., 12, 1437, 10.4310/CMS.2014.v12.n8.a4