Benchmark of identification methods for the estimation of building wall thermal resistance using active method: Numerical study for IWI and single-wall structures
Tài liệu tham khảo
Réglementation Thermique RT 2012, Ed. Centre Scientifique et Technique du Bâtiment, 2012 (in French).
PERFORMER Project, “Portable, Exhaustive, Reliable Flexible and Optimized approach to Monitoring and Evaluation of building energy performance” 2014
S. Roels, “The IEA EBC Annex 58 - project on 'reliable building energy performance characterisation based on full scale dynamic measurements'”, IEA Annex 58 Seminar - Real building energy performance assessment, Gent, 2014.
J. Berger, S. Tasca-Guernouti, M. Humbert, “Experimental method to determine the energy envelope performance of building”, 10th International Conference for Enhanced Building Operations, Kuwait, 2010.
Bacher, 2011, Identifying suitable models for the heat dynamics of buildings, Energy Build., 43, 1511, 10.1016/j.enbuild.2011.02.005
Thébault, 2018, Refinement of the ISABELE method regarding uncertainty quantification and thermal dynamics modelling, Energy Build., 178, 182, 10.1016/j.enbuild.2018.08.047
Alzetto, 2018, A perturbation method to estimate building thermal performance, C. R. Chimie, 21, 938, 10.1016/j.crci.2018.09.003
Soares, 2019, Laboratory and in-situ non-destructive methods to evaluate the thermal transmittance and behavior of walls, windows, and construction elements with innovative materials: a review, Energy Build., 182, 88, 10.1016/j.enbuild.2018.10.021
ISO 8990:1994, “Thermal insulation - Determination of steady-state thermal transmission properties - Calibrated and guarded hot box”, ISO Standard, 1994.
ISO 9869-1:2014, “Thermal insulation - Building elements - In-situ measurement of thermal resistance and thermal transmittance - Part 1: Heat flow meter method”, ISO Standard, 2014.
Rasooli, 2016, A response factor-based method for the rapid in-situ determination of wall’s thermal resistance in existing buildings, Energy Build., 119, 51, 10.1016/j.enbuild.2016.03.009
Mitalas, 1967, Room thermal response factors, ASHRAE Trans., 73, 1
Rasooli, 2019, In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors, Appl. Energy, 253, 10.1016/j.apenergy.2019.113539
Nowoświat, 2018, Estimation of thermal transmittance based on temperature measurements with the application of perturbation numbers, Heat Mass Transf., 54, 1477, 10.1007/s00231-017-2233-y
Naveros, 2012, Analysis of capabilities and limitations of the regression method based in averages, applied to the estimation of the U value of building component tested in Mediterranean weather, Energy Build., 55, 854, 10.1016/j.enbuild.2012.09.028
Danielski, 2015, Diagnosis of buildings’ thermal performance - a quantitative method using thermography under non-steady state heat flow, Energy Procedia, 83, 320, 10.1016/j.egypro.2015.12.186
Albatici, 2010, Infrared thermovision technique for the assessment of thermal transmittance value of opaque building elements on site, Energy Build., 42, 2177, 10.1016/j.enbuild.2010.07.010
Albatici, 2015, A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance, Appl. Energy, 141, 218, 10.1016/j.apenergy.2014.12.035
Nardi, 2014, Quantitative thermography for the estimation of the U-value: state of the art and a case study, J. Phys. Conf. Ser., 547, 10.1088/1742-6596/547/1/012016
Fokaides, 2011, Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes, Appl. Energy, 88, 4358, 10.1016/j.apenergy.2011.05.014
Tejedor, 2017, Quantitative internal infrared thermography for determining in-situ thermal behaviour of façades, Energy Build., 151, 187, 10.1016/j.enbuild.2017.06.040
Tejedor, 2018, Assessing the influence of operating conditions and thermophysical properties on the accuracy of in-situ measured U-values using quantitative internal infrared thermography, Energy Build., 171, 64, 10.1016/j.enbuild.2018.04.011
S. Kato, K. Kuroki, S. Hagihara, “Method of in-situ measurement of thermal insulation performance of building elements using infrared camera”, 6th IAQVEC, Sendai, Japan, 2007.
ISO 9869-2:2018, “Thermal insulation - Building elements - In-situ measurement of thermal resistance and thermal transmittance - Part 2: Infrared method for frame structure dwelling”, ISO Standard, 2018.
Sassine, 2016, A practical method for in-situ thermal characterization of walls, Case Stud. Ther. Eng., 8, 84, 10.1016/j.csite.2016.03.006
Lagonotte, 1999, Analyse de la qualité de modèles nodaux réduits à l’aide de la méthode des quadripôles, Int. J. Therm. Sci., 38, 51, 10.1016/S0035-3159(99)80016-6
Chaffar, 2014, Thermal characterization of homogeneous walls using inverse method, Energy Build., 78, 248, 10.1016/j.enbuild.2014.04.038
T. Wu, “Formalisme des impédances thermiques généralisées: application à la caractérisation thermique de parois de bâtiments”, Ph.D. Thesis, Université d’Artois, 2011 (in French).
Biddulph, 2014, Inferring the thermal resistance and effective thermal mass of a wall using frequent temperature and heat flux measurements, Energy Build., 78, 10, 10.1016/j.enbuild.2014.04.004
De Simon, 2018, Quantifying uncertainty in thermophysical properties of walls by means of Bayesian inversion, Energy Build., 177, 220, 10.1016/j.enbuild.2018.06.045
Petojević, 2018, Estimation of thermal impulse response of a multi-layer building wall through in-situ experimental measurements in a dynamic regime with applications, Appl. Energy, 228, 468, 10.1016/j.apenergy.2018.06.083
Larbi Youcef, 2011, Quantitative diagnosis of insulated building walls of restored old constructions using active infrared thermography, QIRT J., 8, 65, 10.3166/qirt.8.65-87
Règles Th-Bât, Fascicule Matériaux, www.rt-batiment.fr/IMG/pdf/2-fascicule_materiaux.pdf, 2017 (in French).
Données météorologiques de la RT 2012, Ed. Centre Scientifique et Technique du Bâtiment, www.rt-batiment.fr/les-donnees-meteorologiques-rt-2012-a14.html, 2012 (in French).
French energetic regulation, “Arrêté du 30 avril 2013 portant approbation de la méthode de calcul Th-BCE 2012 prévue aux articles 4, 5 et 6 de l’arrêté du 26 octobre 2010 relatif aux caractéristiques thermiques et aux exigences de performance énergétique des bâtiments nouveaux et des parties nouvelles de bâtiments”, §5.2, p. 41-47, 2013.
ISO 6946:2017, “Building components and building elements - Thermal resistance and thermal transmittance - Calculation methods”, ISO Standard, 2017.
D. Maillet, S. André, J.-C. Batsale, A. Degiovanni, C. Moyne, “Thermal Quadrupoles, Solving the heat equation through integral transforms”, Ed. Wiley, 2000.
de Hoog, 1982, An improved method for numerical inversion of laplace transforms, SIAM J. Sci. Statist. Comput., 3, 357, 10.1137/0903022
VOLTRA v8.0w – Detailed simulation of transient thermal effects 3D building elements, www.physibel.be/en/products/voltra, Physibel, Ghent, Belgium.
P. Standaert, P. Houthuys, J. Langmans, W. Parys, “Detailed experimental validation of a transient 3D thermal model with solar processor”, 13th Conference on Advanced Building Skins, Bern, Switzerland, 2018.
M. K. Kumaran, “The IEA Annex 24 - Heat, air and moisture transfer in insulated envelope parts”, Volume 3, Task 3: Material Properties, Final report, Leuven: Laboratorium Bouwfysica, Departement Burgerlijke Bouwkunde, 1996.
COMSOL Multiphysics v.5.3, www.comsol.com, COMSOL AB, Stockholm, Sweden.
Metropolis, 1949, The monte carlo method, J. Am. Stat. Assoc., 44, 335, 10.1080/01621459.1949.10483310
Hastings, 1970, Monte carlo sampling methods using markov chains and their applications, Biometrika, 57, 97, 10.1093/biomet/57.1.97
Vihola, 2012, Robust adaptive Metropolis algorithm with coerced acceptance rate, Statist. Comput., 22, 997, 10.1007/s11222-011-9269-5
CTSM-R: Continuous-Time Stochastic Modelling for R, www.ctsm.info.
N.R. Kristensen, H. Madsen, “Continuous-time stochastic modelling 2.3: mathematics guide”, Technical Report, Technical University of Denmark, 2003.
A. Tikhonov, Y. Arsenin, “Solutions to ill-posed problems”, Ed. Wiley, 1977.
Engl, 2000
Nouy, 2010, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations, Comput. Methods Appl. Mech. Eng., 199, 1603, 10.1016/j.cma.2010.01.009
Chinesta, 2011, A Short review on model order reduction based on proper generalized decomposition, Arch. Comput. Methods Eng., 18, 395, 10.1007/s11831-011-9064-7
S. Thébault, “Contribution à l’évaluation in situ des performances d’isolation thermique de l’enveloppe des bâtiments”, Ph. D. Thesis, Université de Lyon, 2017 (in French).
P. Humbert, “Cesar-LCPC, un code général de calcul par éléments finis”, Bulletin de liaison des Laboratoires des Ponts et Chaussées, 160, 1989 (in French).