Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology

eScience - Tập 1 - Trang 141-162 - 2021
Aoming Huang1, Yanchen Ma1, Jian Peng2, Linlin Li1, Shu-lei Chou2, Seeram Ramakrishna3, Shengjie Peng1
1College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
3Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore

Tài liệu tham khảo

Liang, 2020, Current status and future directions of multivalent metal-ion batteries, Nat. Energy, 5, 646, 10.1038/s41560-020-0655-0 Simon, 2020, Perspectives for electrochemical capacitors and related devices, Nat. Mater., 19, 1151, 10.1038/s41563-020-0747-z Xu, 2019, A long journey of lithium: from the big bang to our smartphones, Energy Environ. Mater., 2, 229, 10.1002/eem2.12057 Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Goodenough, 2013, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438 Chen, 2015, Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries, Adv. Funct. Mater., 25, 6701, 10.1002/adfm.201503206 Wu, 2012, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7, 414, 10.1016/j.nantod.2012.08.004 Zhu, 2019, Towards high energy density lithium battery anodes: silicon and lithium, Chem. Sci., 10, 7132, 10.1039/C9SC01201J Ogata, 2018, Evolving affinity between coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries, Nat. Commun., 9, 479, 10.1038/s41467-018-02824-w Stokes, 2018, Axial Si–Ge heterostructure nanowires as lithium-ion battery anodes, Nano Lett., 18, 5569, 10.1021/acs.nanolett.8b01988 Kim, 2010, A critical size of silicon nano-anodes for lithium rechargeable batteries, Angew. Chem. Int. Ed., 49, 2146, 10.1002/anie.200906287 Aghajamali, 2018, Size and surface effects of silicon nanocrystals in graphene aerogel composite anodes for lithium ion batteries, Chem. Mater., 30, 7782, 10.1021/acs.chemmater.8b03198 Lee, 2010, Silicon nanoparticles-graphene paper composites for Li ion battery anodes, Chem. Commun., 46, 2025, 10.1039/b919738a Liu, 2013, Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes, Nano Lett., 13, 3414, 10.1021/nl401880v Cui, 2009, Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett., 9, 3370, 10.1021/nl901670t Chan, 2008, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411 Park, 2009, Silicon nanotube battery anodes, Nano Lett., 9, 3844, 10.1021/nl902058c Song, 2010, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett., 10, 1710, 10.1021/nl100086e Ryu, 2016, Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes, ACS Nano, 10, 2843, 10.1021/acsnano.5b07977 Chen, 2018, Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode, Small, 14 Deng, 2013, Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance, Angew. Chem. Int. Ed., 52, 2326, 10.1002/anie.201208357 Liu, 2015, Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-Ion batteries with long cycle life, ACS Nano, 9, 1198, 10.1021/nn5048052 Yao, 2011, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett., 11, 2949, 10.1021/nl201470j Ma, 2007, Nest-like silicon nanospheres for high-capacity lithium storage, Adv. Mater., 19, 4067, 10.1002/adma.200700621 Gowda, 2012, Three-dimensionally engineered porous silicon electrodes for Li Ion batteries, Nano Lett., 12, 6060, 10.1021/nl302114j Zhao, 2012, Hierarchical micro/nano porous silicon Li-ion battery anodes, Chem. Commun., 48, 5079, 10.1039/c2cc31476b Chang, 2014, Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode, Adv. Mater., 26, 758, 10.1002/adma.201302757 Wu, 2021, Strategies for rational design of high-power lithium-ion batteries, Energy Environ. Mater., 4, 19, 10.1002/eem2.12088 Lee, 2016, Electrochemical investigations on TiO2-B nanowires as a promising high capacity anode for sodium-ion batteries, Electrochim. Acta, 200, 21, 10.1016/j.electacta.2016.03.110 Jiang, 2017, A sustainable route from fly ash to silicon nanorods for high performance lithium ion batteries, Chem. Eng. J., 330, 1052, 10.1016/j.cej.2017.08.061 Cho, 2013, Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands, Nano Lett., 13, 5740, 10.1021/nl4036498 Zhu, 2013, Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries, J. Mater. Chem. A, 1, 4483, 10.1039/c3ta01474f Huang, 2020, Fabrication of porous fibers via electrospinning: strategies and applications, Polym. Rev., 60, 595, 10.1080/15583724.2019.1688830 Kong, 2019, Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries, Sci. Bull., 64, 261, 10.1016/j.scib.2019.01.015 Wang, 2021, Shape memory polymer fibers: materials, structures, and applications, Adv. Fiber Mater. Heitsch, 2008, Solution-liquid-solid (SLS) growth of silicon nanowires, J. Am. Chem. Soc., 130, 5436, 10.1021/ja8011353 Chockla, 2011, Silicon nanowire fabric as a lithium ion battery electrode material, J. Am. Chem. Soc., 133, 20914, 10.1021/ja208232h Ge, 2012, Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett., 12, 2318, 10.1021/nl300206e Wang, 2015, Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes, J. Mater. Chem. A, 3, 494, 10.1039/C4TA06088A Zhang, 2019, Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction, Nano Energy, 55, 226, 10.1016/j.nanoen.2018.10.029 Lim, 2017, Nanofiber technology: current status and emerging developments, Prog. Polym. Sci., 70, 1, 10.1016/j.progpolymsci.2017.03.002 Zhao, 2020, Functional electrospun fibers for local therapy of cancer, Adv. Fiber Mater., 2, 229, 10.1007/s42765-020-00053-9 Hou, 2018, Recent advances and perspective on design and synthesis of electrode materials for electrochemical sensing of heavy metals, Energy Environ. Mater., 1, 113, 10.1002/eem2.12011 Zhou, 2020, Progress and perspective of antiviral protective material, Adv. Fiber Mater., 2, 123, 10.1007/s42765-020-00047-7 Peng, 2016, Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage, Nano Energy, 22, 361, 10.1016/j.nanoen.2016.02.001 Hu, 2018, A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries, Adv. Mater., 30 Peng, 2018, Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc–air batteries, Adv. Energy Mater., 8, 10.1002/aenm.201800612 Zhou, 2013, Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries, Small, 9, 2684, 10.1002/smll.201202071 Zhu, 2016, Atomic-scale control of silicon expansion space as ultrastable battery anodes, ACS Nano, 10, 8243, 10.1021/acsnano.6b04522 Han, 2018, Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries, ACS Nano, 12, 4835, 10.1021/acsnano.8b01558 Wang, 2012, In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries, Nano Lett., 12, 1624, 10.1021/nl204559u Yoo, 2012, Scalable fabrication of silicon nanotubes and their application to energy storage, Adv. Mater., 24, 5452, 10.1002/adma.201201601 Zhang, 2019, Dimensionally designed carbon-silicon hybrids for lithium storage, Adv. Funct. Mater., 29 Liu, 2017, Flexible and stretchable energy storage: recent advances and future perspectives, Adv. Mater., 29 Ji, 2019, Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc−air batteries, Adv. Mater., 31, 10.1002/adma.201808267 Ji, 2019, Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries, Carbon, 142, 379, 10.1016/j.carbon.2018.10.064 Xu, 2019, Electrospun flexible Si/C@CNF nonwoven anode for high capacity and durable lithium-ion battery, Compos. Commun., 11, 1, 10.1016/j.coco.2018.10.012 Yildiz, 2019, Hybrid carbon nanotube fabrics with sacrificial nanofibers for flexible high performance lithium-ion battery anodes, J. Electrochem. Soc., 166, A473, 10.1149/2.0821902jes Lee, 2014, Novel multi-layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery, Nanoscale, 6, 5989, 10.1039/c4nr00318g Shoorideh, 2018, Harvesting interconductivity and intraconductivity of graphene nanoribbons for a directly deposited, high-rate silicon-based anode for Li-ion batteries, ACS Appl. Energy Mater., 1, 1106, 10.1021/acsaem.7b00228 Jiang, 2018, Electrospun nanofiber reinforced composites: a review, Polym. Chem., 9, 2685, 10.1039/C8PY00378E Cavaliere, 2011, Electrospinning: designed architectures for energy conversion and storage devices, Energy Environ. Sci., 4, 4761, 10.1039/c1ee02201f Lei, 2020, Electrospun inorganic nanofibers for oxygen electrocatalysis: design, fabrication, and progress, Adv. Energy Mater., 10, 10.1002/aenm.201902115 Lu, 2017, Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance, Adv. Energy Mater., 7, 10.1002/aenm.201601301 Greiner, 2007, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chem. Int. Ed., 46, 5670, 10.1002/anie.200604646 Zhang, 2016, Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Prog. Mater. Sci., 76, 319, 10.1016/j.pmatsci.2015.08.002 Liang, 2020, Recent advances in electrospun nanofibers for supercapacitors, J. Mater. Chem. A, 8, 16747, 10.1039/D0TA05100D Lee, 2018, Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons, Prog. Polym. Sci., 86, 40, 10.1016/j.progpolymsci.2018.07.002 Li, 2013, Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage, Carbon, 51, 185, 10.1016/j.carbon.2012.08.027 Ji, 2009, Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization, J. Mater. Chem., 19, 4992, 10.1039/b903165k Fan, 2009, Electrospinning preparation of nanosilicon/disordered carbon composite as anode materials in Li-ion battery, Electrochem. Solid State Lett., 12, 199, 10.1149/1.3186642 Kim, 2014, Silicon-rich carbon hybrid nanofibers from water-based spinning: the synergy between silicon and carbon for Li-ion battery anode application, ChemElectroChem, 1, 220, 10.1002/celc.201300103 Li, 2016, Towards flexible binderless anodes: silicon/carbon fabrics via double-nozzle electrospinning, Chem. Commun., 52, 11398, 10.1039/C6CC04074H Li, 2014, Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries, Solid State Ionics, 254, 17, 10.1016/j.ssi.2013.10.063 Wang, 2020, Optimal quantity of nano-silicon for electrospun silicon/carbon fibers as high capacity anodes, Front. Chem., 7, 867, 10.3389/fchem.2019.00867 Jiang, 2016, Dual core-shell structured Si@SiOx@C nanocomposite synthesized via a one-step pyrolysis method as a highly stable anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 31611, 10.1021/acsami.6b09775 Chen, 2017, Hollow core–shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries, J. Power Sources, 342, 467, 10.1016/j.jpowsour.2016.12.089 Kim, 2015, Improving the microstructure and electrochemical performance of carbon nanofibers containing graphene-wrapped silicon nanoparticles as a Li-ion battery anode, J. Power Sources, 273, 404, 10.1016/j.jpowsour.2014.09.109 Xu, 2014, Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities, Nano Energy, 6, 27, 10.1016/j.nanoen.2014.03.003 Chen, 2016, Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes, Electrochim. Acta, 210, 53, 10.1016/j.electacta.2016.05.086 Liu, 2013, Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material, Electrochim. Acta, 102, 246, 10.1016/j.electacta.2013.04.021 Wang, 2015, Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries, Carbon, 82, 337, 10.1016/j.carbon.2014.10.078 Kim, 2017, 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries, J. Ind. Eng. Chem., 49, 105, 10.1016/j.jiec.2017.01.014 Ahmadabadi, 2020, Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries, Electrochim. Acta, 330 Cai, 2019, Dual-confined SiO embedded in TiO2 shell and 3D carbon nanofiber web as stable anode material for superior lithium storage, Adv. Mater. Interfaces, 6, 10.1002/admi.201801800 Du, 2021, Sn alloy and graphite addition to enhance initial coulombic efficiency and cycling stability of SiO anodes for Li-ion batteries, Energy Environ. Mater. Wu, 2012, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 7, 310, 10.1038/nnano.2012.35 Qiao, 2013, Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries, Carbon, 54, 29, 10.1016/j.carbon.2012.10.066 Ma, 2017, A heart-coronary arteries structure of carbon nanofibers/graphene/silicon composite anode for high performance lithium ion batteries, Sci. Rep., 7, 9642, 10.1038/s41598-017-09658-4 Moscatelli, 2018, From an idea to a technology, Nat. Nanotechnol., 13, 528, 10.1038/s41565-018-0206-z Stöber, 1968, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62, 10.1016/0021-9797(68)90272-5 Cai, 2005, Three-dimensional magnesia-based nanocrystal assemblies via low-temperature magnesiothermic reaction of diatom microshells, J. Am. Ceram. Soc., 88, 2005, 10.1111/j.1551-2916.2005.00388.x Xiao, 2015, Inward lithium-ion breathing of hierarchically porous silicon anodes, Nat. Commun., 6, 8844, 10.1038/ncomms9844 Chen, 2017, Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries, Adv. Mater., 29 Xu, 2016, Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion, J. Mater. Chem. A, 4, 6098, 10.1039/C6TA01344A Ryu, 2015, Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning, Nanoscale, 7, 6126, 10.1039/C5NR00224A Yoo, 2013, Porous silicon nanowires for lithium rechargeable batteries, Nanotechnology, 24, 10.1088/0957-4484/24/42/424008 Qi, 2020, Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries, Chem. Eng. J., 397, 10.1016/j.cej.2020.125380 Xia, 2019, Porous Si@SiOx@N-rich carbon nanofibers as anode in lithium-ion batteries under high temperature, ChemElectroChem, 6, 4402, 10.1002/celc.201901111 Lee, 2013, Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries, ACS Appl. Mater. Interfaces, 5, 12005, 10.1021/am403798a Ouyang, 2019, Silicon@nitrogen-doped porous carbon fiber composite anodes synthesized by an in-situ reaction collection strategy for high-performance lithium-ion batteries, Appl. Surf. Sci., 475, 211, 10.1016/j.apsusc.2018.12.172 Li, 2021, Electrospinning engineering enables high-performance sodium-ion batteries, Adv. Fiber Mater. Shi, 2021, Recent advances on electrospun nanofiber materials for post-lithium ion batteries, Adv. Fiber Mater. Fridrikh, 2003, Controlling the fiber diameter during electrospinning, Phys. Rev. Lett., 90, 144502, 10.1103/PhysRevLett.90.144502 Katta, 2004, Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector, Nano Lett., 4, 2215, 10.1021/nl0486158 Wang, 2013, Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites, Nanoscale, 5, 2647, 10.1039/c3nr00322a McCann, 2006, Melt coaxial electrospinning:a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers, Nano Lett., 6, 2868, 10.1021/nl0620839 Ji, 2009, Electrospun carbon nanofibers containing silicon particles as an energy-storage medium, Carbon, 47, 3219, 10.1016/j.carbon.2009.07.039 Wang, 2008, Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries, J. Power Sources, 183, 717, 10.1016/j.jpowsour.2008.05.079 Qu, 2018, Freestanding silicon/carbon nanofibers composite membrane as a flexible anode for Li-Ion battery, J. Power Sources, 403, 103, 10.1016/j.jpowsour.2018.09.086 Wang, 2010, A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries, J. Power Sources, 195, 5052, 10.1016/j.jpowsour.2010.01.088 Gu, 2012, In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix, ACS Nano, 6, 8439, 10.1021/nn303312m Choi, 2010, Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries, Electrochim. Acta, 56, 790, 10.1016/j.electacta.2010.09.101 Lee, 2014, Si-carbon composite nanofibers with good scalability and favorable architecture for highly reversible lithium storage and superb kinetics, Electrochim. Acta, 118, 100, 10.1016/j.electacta.2013.12.009 Hu, 2020, Strategies in precursors and post treatments to strengthen carbon nanofibers, Adv. Fiber Mater, 2, 46, 10.1007/s42765-020-00035-x Sun, 2016, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, 10.1038/nenergy.2016.71 He, 2011, Alumina-coated patterned amorphous silicon as the anode for a Lithium-Ion battery with high Coulombic efficiency, Adv. Mater., 23, 4938, 10.1002/adma.201102568 Yoshio, 2002, Carbon-coated Si as a lithium-ion battery anode material, J. Electrochem. Soc., 149, A1598, 10.1149/1.1518988 Dimov, 2003, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations, Electrochim. Acta, 48, 1579, 10.1016/S0013-4686(03)00030-6 Zhou, 2013, A PEO-assisted electrospun silicon-graphene composite as an anode material for lithium-ion batteries, J. Mater. Chem. A, 1, 9019, 10.1039/c3ta11720k He, 2017, Silicon/graphene/carbon hierarchical structure nanofibers for high performance lithium ion batteries, Mater. Lett., 200, 128, 10.1016/j.matlet.2017.04.118 Xue, 2013, Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode, Nano Energy, 2, 361, 10.1016/j.nanoen.2012.11.001 Jung, 2015, Glassy metal alloy nanofiber anodes employing graphene wrapping layer: toward ultralong-cycle-life lithium-ion batteries, ACS Nano, 9, 6717, 10.1021/acsnano.5b01402 Li, 2014, Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating, J. Mater. Chem. A, 2, 11417, 10.1039/C4TA01562B Chen, 2015, Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries, J. Power Sources, 298, 130, 10.1016/j.jpowsour.2015.08.058 Fu, 2013, Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries, Nano Energy, 2, 976, 10.1016/j.nanoen.2013.03.019 Liu, 2011, Ultrafast electrochemical lithiation of individual Si nanowire anodes, Nano Lett., 11, 2251, 10.1021/nl200412p Liu, 2012, A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett., 12, 3315, 10.1021/nl3014814 McDowell, 2012, The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation, Nano Energy, 1, 401, 10.1016/j.nanoen.2012.03.004 Ji, 2009, Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes, Electrochem. Commun., 11, 1146, 10.1016/j.elecom.2009.03.042 Ji, 2010, Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries, Energy Environ. Sci., 3, 124, 10.1039/B912188A McCormac, 2015, Preparation of porous Si and TiO2 nanofibres using a sulphur-templating method for lithium storage, Phys. Status Solidi A, 212, 877, 10.1002/pssa.201431834 Xu, 2014, Carbon nanofibers containing Si nanoparticles and graphene-covered Ni for high performance anodes in Li ion batteries, RSC Adv., 4, 22359, 10.1039/C4RA03066D Wang, 2015, Foamed mesoporous carbon/silicon composite nanofiber anode for lithium ion batteries, J. Power Sources, 281, 285, 10.1016/j.jpowsour.2015.01.184 Xu, 2014, Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities, J. Mater. Chem. A, 2, 17944, 10.1039/C4TA04257C Zeng, 2021, N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries, J. Energy Chem., 54, 727, 10.1016/j.jechem.2020.06.022 Lee, 2013, Facile conductive bridges formed between silicon nanoparticles inside hollow carbon nanofibers, Nanoscale, 5, 4790, 10.1039/c3nr00982c Lee, 2019, Rational design of a Si–Sn–C ternary anode having exceptional rate performance, Energy Storage Mater., 17, 62, 10.1016/j.ensm.2018.08.001 Zhang, 2014, Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage, Adv. Funct. Mater., 24, 4337, 10.1002/adfm.201400178 Yang, 2015, Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries, Nano Energy, 18, 133, 10.1016/j.nanoen.2015.09.016 Li, 2017, Electrospun hollow nanofibers for advanced secondary batteries, Nano Energy, 39, 111, 10.1016/j.nanoen.2017.06.050 Liu, 2015, Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes, ACS Nano, 9, 1985, 10.1021/nn507003z Fahad, 2011, Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits, Nano Lett., 11, 4393, 10.1021/nl202563s Su, 2014, Silicon-based nanomaterials for lithium-ion batteries: a review, Adv. Energy Mater., 4, 10.1002/aenm.201300882 Wu, 2012, Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett., 12, 904, 10.1021/nl203967r Son, 2018, Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes, Adv. Mater., 30, 10.1002/adma.201705430 Hwang, 2012, Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes, Nano Lett., 12, 802, 10.1021/nl203817r Lee, 2012, Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode, J. Power Sources, 206, 267, 10.1016/j.jpowsour.2012.01.120 Yarin, 2011, Coaxial electrospinning and emulsion electrospinning of core–shell fibers, Polym. Adv. Technol., 22, 310, 10.1002/pat.1781 Chen, 2016, Low-temperature treated lignin as both binder and conductive additive for silicon nanoparticle composite electrodes in lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 32341, 10.1021/acsami.6b11500 Luo, 2016, Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage, ACS Nano, 10, 10524, 10.1021/acsnano.6b06517 Hieu, 2014, Electrospun nanofibers with a core-shell structure of silicon nanoparticles and carbon nanotubes in carbon for use as lithium-ion battery anodes, J. Mater. Chem. A, 2, 15094, 10.1039/C4TA02348J Zhang, 2019, Printed supercapacitors: materials, printing and applications, Chem. Soc. Rev., 48, 3229, 10.1039/C7CS00819H Yan, 2020, Electrospun nanofibers for new generation flexible energy storage, Energy Environ. Mater. Yu, 2020, Recent advances in design of flexible electrodes for miniaturized supercapacitors, Small Methods, 4, 10.1002/smtd.201900824 Chen, 2018, Graphene-based materials for flexible energy storage devices, J. Energy Chem., 27, 12, 10.1016/j.jechem.2017.08.015 Rogers, 2010, Materials and mechanics for stretchable electronics, Science, 327, 1603, 10.1126/science.1182383 Wang, 2016, Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors, Mater. Horiz., 3, 208, 10.1039/C5MH00284B Yao, 2015, Nanomaterial-enabled stretchable conductors: strategies, materials and devices, Adv. Mater., 27, 1480, 10.1002/adma.201404446 Yao, 2018, Nanomaterial-enabled wearable sensors for healthcare, Adv. Healthcare Mater., 7, 10.1002/adhm.201700889 Aravindan, 2015, Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries, Chem. Commun., 51, 2225, 10.1039/C4CC07824A Zhai, 2020, Recent advances in flexible/stretchable batteries and integrated devices, Energy Storage Mater, 33, 116, 10.1016/j.ensm.2020.07.003 Ding, 2019, Electrospun polymer biomaterials, Prog. Polym. Sci., 90, 1, 10.1016/j.progpolymsci.2019.01.002 Wu, 2020, Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering, Chin. Chem. Lett., 31, 617, 10.1016/j.cclet.2019.07.033 Li, 2014, One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries, J. Power Sources, 254, 33, 10.1016/j.jpowsour.2013.12.044 Dirican, 2014, Carbon-confined PVA-derived silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries, J. Electrochem. Soc., 161, A2197, 10.1149/2.0811414jes Zhu, 2021, In situ fabrication of electrospun carbon nanofibers–binary metal sulfides as freestanding electrode for electrocatalytic water splitting, Adv. Fiber Mater., 3, 117, 10.1007/s42765-020-00063-7 Zhang, 2021, Carbon fiber supported binary metal sulfide catalysts with multi-dimensional structures for electrocatalytic nitrogen reduction reactions over a wide pH range, Adv. Fiber Mater., 3, 229, 10.1007/s42765-021-00072-0 Rahaman, 2007, A review of heat treatment on polyacrylonitrile fiber, Polym. Degrad. Stabil., 92, 1421, 10.1016/j.polymdegradstab.2007.03.023 Dirican, 2015, Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries, Electrochim. Acta, 169, 52, 10.1016/j.electacta.2015.04.035 Zhang, 2014, Mass production of three-dimensional hierarchical microfibers constructed from silicon-carbon core-shell architectures with high-performance lithium storage, Carbon, 72, 169, 10.1016/j.carbon.2014.01.069 Kim, 2018, Nanostructured Si/C fibers as a highly reversible anode material for all-solid-state lithium-ion batteries, J. Electrochem. Soc., 165, A1903, 10.1149/2.1491809jes Shen, 2020, Mechanistic insight into the role of N-doped carbon matrix in electrospun binder-free Si@C composite anode for lithium-ion batteries, Ionics, 26, 3297, 10.1007/s11581-020-03484-x An, 2019, Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with Mxene for lithium-metal anode, Adv. Funct. Mater., 30 Wang, 2020, One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries, Energy Storage Mater., 24, 312, 10.1016/j.ensm.2019.07.045 Xu, 2015, 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries, Adv. Energy Mater., 5, 10.1002/aenm.201400753 Park, 2013, High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer, RSC Adv., 3, 2538, 10.1039/c2ra23365g Xu, 2018, SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode, Adv. Mater., 30, 10.1002/adma.201707430 Huang, 2018, Multiscale engineered Si/SiOx nanocomposite electrodes for lithium-ion batteries using layer-by-layer spray deposition, ACS Appl. Mater. Interfaces, 10, 15624, 10.1021/acsami.8b00370 Tolosa, 2018, Continuous silicon oxycarbide fiber mats with tin nanoparticles as a high capacity anode for lithium-ion batteries, Sustain. Energy Fuels, 2, 215, 10.1039/C7SE00431A Min, 2016, High crystalline carbon network of Si/C nanofibers obtained from the embedded pitch and its contribution to Li ion kinetics, Electrochim. Acta, 220, 511, 10.1016/j.electacta.2016.10.111 Kong, 2013, Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes, Nanoscale, 5, 2967, 10.1039/c3nr34024d Self, 2017, High areal capacity Si/LiCoO2 batteries from electrospun composite fiber mats, ChemSusChem, 10, 1823, 10.1002/cssc.201700096 Liu, 2018, Facile fabrication of hollow structured Si-Ni-C nanofabric anode for Li-ion battery, Mater. Lett., 231, 205, 10.1016/j.matlet.2018.08.044 Wang, 2014, Preparation of Si/Sn-based nanoparticles composited with carbon fibers and improved electrochemical performance as anode materials, ACS Sustain. Chem. Eng., 2, 2310, 10.1021/sc500290x Lee, 2015, Salami-like electrospun Si nanoparticle-ITO composite nanofibers with internal conductive pathways for use as anodes for Li-ion batteries, ACS Appl. Mater. Interfaces, 7, 27234, 10.1021/acsami.5b08401 Zeng, 2019, Preparation of dual-shell Si/TiO2/CFs composite and its lithium storage performance, Trans. Nonferrous Metals Soc. China, 29, 2384, 10.1016/S1003-6326(19)65144-7 Wang, 2020, One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning, Energy Storage Mater., 25, 443, 10.1016/j.ensm.2019.09.036 Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849 Dikin, 2007, Preparation and characterization of graphene oxide paper, Nature, 448, 457, 10.1038/nature06016 Shi, 2019, Advanced functional fiber and smart textile, Adv. Fiber Mater., 1, 3, 10.1007/s42765-019-0002-z Schwierz, 2010, The rise and rise of graphene, Nat. Nanotechnol., 5, 755, 10.1038/nnano.2010.224 Novoselov, 2004, Electric field in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Li, 2015, Surface capacitive contributions: towards high rate anode materials for sodium ion batteries, Nano Energy, 12, 224, 10.1016/j.nanoen.2014.12.032 Kamali, 2017, Large scale green production of ultra-high capacity anode consisting of graphene encapsulated silicon nanoparticles, J. Mater. Chem. A, 5, 19126, 10.1039/C7TA04335J Zhou, 2012, Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries, Chem. Commun., 48, 2198, 10.1039/c2cc17061b David, 2016, Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries, Nat. Commun., 7, 10998, 10.1038/ncomms10998 Gao, 2019, Rational design of multi-functional CoS@rGO composite for performance enhanced Li-S cathode, J. Power Sources, 421, 132, 10.1016/j.jpowsour.2019.03.015 Shao, 2018, Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions, ACS Appl. Mater. Interfaces, 10, 33097, 10.1021/acsami.8b10110 Al Hassan, 2019, Emergence of graphene as a promising anode material for rechargeable batteries: a review, Mater. Today Chem., 11, 225, 10.1016/j.mtchem.2018.11.006 Shin, 2014, Graphene wrapping as a protective clamping layer anchored to carbon nanofibers encapsulating Si nanoparticles for a Li-ion battery anode, Nanoscale, 6, 12718, 10.1039/C4NR03173C Cho, 2015, Facile synthesis of porous silicon nanofibers by magnesium reduction for application in lithium ion batteries, Nanoscale Res. Lett., 10, 424, 10.1186/s11671-015-1132-8 Kim, 2015, The critical contribution of unzipped graphene nanoribbons to scalable silicon-carbon fiber anodes in rechargeable Li-ion batteries, Nano Energy, 16, 446, 10.1016/j.nanoen.2015.07.017 Wu, 2016, A honeycomb-cobweb inspired hierarchical core-shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes, Carbon, 98, 582, 10.1016/j.carbon.2015.11.048 Liu, 2012, Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review, Compos. Sci. Technol., 72, 121, 10.1016/j.compscitech.2011.11.019 De Las Casas, 2012, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources, 208, 74, 10.1016/j.jpowsour.2012.02.013 Xiong, 2013, Applications of carbon nanotubes for lithium ion battery anodes, Materials, 6, 1138, 10.3390/ma6031138 Li, 2013, Enhanced rate capability by employing carbon nanotube-loaded electrospun Si/C composite nanofibers as binder-free anodes, J. Electrochem. Soc., 160, A528, 10.1149/2.031304jes Magasinski, 2010, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 9, 353, 10.1038/nmat2725 Liu, 2014, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes, Nat. Nanotechnol., 9, 187, 10.1038/nnano.2014.6 Li, 2019, Sandwich structure of carbon-coated silicon/carbon nanofiber anodes for lithium-ion batteries, Ceram. Int., 45, 16195, 10.1016/j.ceramint.2019.05.141 Liu, 2019, Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon, Appl. Surf. Sci., 494, 94, 10.1016/j.apsusc.2019.07.193 Du, 2011, Covalently-functionalizing synthesis of Si@C core-shell nanocomposites as high-capacity anode materials for lithium-ion batteries, J. Mater. Chem., 21, 15692, 10.1039/c1jm12368h Messing, 1974, Covalent coupling of alkaline bacillus subtilis protease to controlledpore silica with a new simplified coupling technique, Mol. Cell. Biochem., 4, 217, 10.1007/BF01731484 Thakur, 2012, Gold-coated porous silicon films as anodes for lithium ion batteries, J. Power Sources, 205, 426, 10.1016/j.jpowsour.2012.01.058 Chen, 2012, Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles, Angew. Chem. Int. Ed., 51, 2409, 10.1002/anie.201107885 Zhang, 2019, In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-ion batteries, ACS Nano, 13, 3054, 10.1021/acsnano.8b08088 Karki, 2013, Hoop-strong nanotubes for battery electrodes, ACS Nano, 7, 8295, 10.1021/nn403895h Thess, 1996, Crystalline ropes of metallic carbon nanotubes, Science, 273, 483, 10.1126/science.273.5274.483 Chen, 2013, Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries, J. Am. Chem. Soc., 135, 16280, 10.1021/ja408421n Chen, 2012, Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries, Energy Environ. Sci., 5, 7898, 10.1039/c2ee22085g Helveg, 2004, Atomic-scale imaging of carbon nanofibre growth, Nature, 427, 426, 10.1038/nature02278 Anton, 2008, On the reaction kinetics of Ni with amorphous carbon, Carbon, 46, 656, 10.1016/j.carbon.2008.01.021 Kohandehghan, 2014, Nanometer-scale Sn coatings improve the performance of silicon nanowire LIB anodes, J. Mater. Chem. A, 2, 11261, 10.1039/c4ta00993b Lu, 2015, In situ TEM observations of Sn-containing silicon nanowires undergoing reversible pore formation due to fast lithiation/delithiation kinetics, J. Phys. Chem. C, 119, 21889, 10.1021/acs.jpcc.5b06386 Jeong, 2014, Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode, ACS Nano, 8, 2977, 10.1021/nn500278q Peng, 2015, Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications, ACS Nano, 9, 1945, 10.1021/nn506851x Mazzaro, 2015, Photoinduced processes between pyrene-functionalized silicon nanocrystals and carbon allotropes, Chem. Mater., 27, 4390, 10.1021/acs.chemmater.5b01769 Sadhu, 2014, Template-free fabrication of highly-oriented single-crystalline 1D-rutile TiO2-MWCNT composite for enhanced photoelectrochemical activity, J. Phys. Chem. C, 118, 19363, 10.1021/jp5023983 Li, 2015, General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage, Nano Lett., 15, 2186, 10.1021/acs.nanolett.5b00291 Rhee, 2020, Off-stoichiometric TiO2-x-decorated graphite anode for high-power lithium-ion batteries, J. Alloys Compd., 843, 10.1016/j.jallcom.2020.156042 Li, 2019, A facile strategy to construct silver-modified, ZnO-incorporated and carbon-coated silicon/porous-carbon nanofibers with enhanced lithium storage, Small, 15 Wu, 2016, Enhanced electrochemical performance of heterogeneous Si/MoSi2 anodes prepared by a magnesiothermic reduction, ACS Appl. Mater. Interfaces, 8, 16862, 10.1021/acsami.6b04448 Hui, 2019, Low-temperature reduction strategy synthesized Si/Ti3C2 mxene composite anodes for high-performance Li-ion batteries, Adv. Energy Mater., 9, 10.1002/aenm.201901065 Park, 2014, Control of interfacial layers for high-performance porous Si lithium-ion battery anode, ACS Appl. Mater. Interfaces, 6, 16360, 10.1021/am5046197 Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299, 10.1002/adem.200300567 Sarkar, 2018, High entropy oxides for reversible energy storage, Nat. Commun., 9, 3400, 10.1038/s41467-018-05774-5 Qiu, 2019, A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance, J. Alloys Compd., 777, 767, 10.1016/j.jallcom.2018.11.049 Yoon, 2017, Using first-principles calculations for the advancement of materials for rechargeable batteries, Adv. Funct. Mater., 27, 10.1002/adfm.201702887 Shi, 2016, Multi-scale computation methods: their applications in lithium-ion battery research and development, Chin. Phys. B, 25, 10.1088/1674-1056/25/1/018212 Gao, 2019, Mechanism and effect of thermal degradation on electrolyte ionic diffusivity in Li-ion batteries: a molecular dynamics study, Electrochim. Acta, 323, 10.1016/j.electacta.2019.134791 Liu, 2020, Machine learning assisted materials design and discovery for rechargeable batteries, Energy Storage Mater, 31, 434, 10.1016/j.ensm.2020.06.033 Yang, 2021, J. Guo, in situ/operando (soft) X-ray spectroscopy study of beyond lithium-ion batteries, Energy Environ. Mater., 4, 139, 10.1002/eem2.12172 Hu, 2021, Achieving highly reproducible results in graphite-based Li-ion full coin cells, Joule, 5, 1011, 10.1016/j.joule.2021.03.016 Murray, 2019, A guide to full coin cell making for academic researchers, J. Electrochem. Soc., 166, A329, 10.1149/2.1171902jes Wu, 2020, An empirical model for the design of batteries with high energy density, ACS Energy Lett., 5, 807, 10.1021/acsenergylett.0c00211 Li, 2016, Electrospun carbon-based nanostructured electrodes for advanced energy storage - a review, Energy Storage Mater., 5, 58, 10.1016/j.ensm.2016.06.002 He, 2019, Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries, Energy Storage Mater., 23, 233, 10.1016/j.ensm.2019.05.008 Guo, 2018, A perspective on energy densities of rechargeable Li-S batteries and alternative sulfur-based cathode materials, Energy Environ. Mater., 1, 20, 10.1002/eem2.12003 Lin, 2021, Promising electrode and electrolyte materials for high-energy-density thin-film lithium batteries, Energy Environ. Mater. Chen, 2019, Confining silicon nanoparticles within freestanding multichannel carbon fibers for high-performance Li-ion batteries, ACS Appl. Energy Mater., 2, 5214, 10.1021/acsaem.9b00898 Shoorideh, 2016, Facile, water-based, direct–deposit fabrication of hybrid silicon assemblies for scalable and high–performance Li–ion battery anodes, Electrochim. Acta, 222, 946, 10.1016/j.electacta.2016.11.062 Wu, 2014, Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries, J. Power Sources, 258, 39, 10.1016/j.jpowsour.2014.02.047