Confinement Catalysis with 2D Materials for Energy Conversion

Advanced Materials - Tập 31 Số 50 - 2019
Lei Tang1,2, Xianguang Meng1, Dehui Deng1,2, Xinhe Bao1,2
1State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
2University of Chinese Academy of Sciences, Beijing, 100049, China

Tóm tắt

Abstract

The unique electronic and structural properties of 2D materials have triggered wide research interest in catalysis. The lattice of 2D materials and the interface between 2D covers and other substrates provide intriguing confinement environments for active sites, which has stimulated a rising area of “confinement catalysis with 2D materials.” Fundamental understanding of confinement catalysis with 2D materials will favor the rational design of high‐performance 2D nanocatalysts. Confinement catalysis with 2D materials has found extensive applications in energy‐related reaction processes, especially in the conversion of small energy‐related molecules such as O2, CH4, CO, CO2, H2O, and CH3OH. Two representative strategies, i.e., 2D lattice‐confined single atoms and 2D cover‐confined metals, have been applied to construct 2D confinement catalytic systems with superior catalytic activity and stability. Herein, the recent advances in the design, applications, and structure–performance analysis of two 2D confinement catalytic systems are summarized. The different routes for tuning the electronic states of 2D confinement catalysts are highlighted and perspectives on confinement catalysis with 2D materials toward energy conversion and utilization in the future are provided.

Từ khóa


Tài liệu tham khảo

10.1126/science.1246501

10.1038/nature11475

10.1073/pnas.0603395103

10.1126/science.1103197

10.1021/acs.accounts.6b00483

10.1039/C6CS00426A

10.1039/C4CS00470A

10.1002/adma.201501217

10.1002/adma.201807001

10.1021/ar100160t

10.1126/science.1188267

10.1021/ar300249b

10.1021/ja511498s

10.1093/nsr/nwv024

10.1038/nmat1849

10.1021/cr300263a

10.1021/acs.chemrev.6b00558

10.1038/s41586-019-1013-x

10.1038/s41565-017-0035-5

10.1038/s41565-018-0134-y

10.1038/nnano.2015.340

10.1039/C4CS00236A

10.1021/acs.chemrev.7b00689

10.1002/adma.201606967

10.1021/acs.chemrev.8b00501

10.1126/science.1085721

10.1002/anie.200462473

10.1126/science.1176745

10.1126/science.1192449

10.1038/nchem.1095

10.1021/ar300361m

10.1002/anie.201703864

10.1038/s41565-018-0197-9

10.1021/acscatal.8b02360

10.1126/science.1168049

10.1039/C4CS00141A

10.1039/C3CS60401B

10.1038/nenergy.2016.130

10.1002/adma.201201792

10.1016/j.jcat.2011.06.015

10.1021/nn901850u

10.1021/cm102666r

10.1016/j.nanoen.2012.07.021

10.1021/cr5003563

10.1021/ja0610333

10.1002/adma.201506316

10.1021/jp104074t

10.1016/j.carbon.2014.02.076

10.1126/science.aad0832

10.1002/anie.201101287

10.1021/nn404927n

10.1038/nmat2711

10.1002/anie.201109257

10.1021/cm5037502

10.1002/anie.201209548

10.1039/C5TA10599D

10.1021/cs200652y

10.1126/sciadv.1400129

10.1039/c3ta01648j

10.1021/nn3021234

10.1038/2011212a0

10.1038/ncomms8992

10.1021/jacs.7b10194

10.1126/sciadv.1601945

10.1021/jacs.7b05372

10.1021/jacs.7b05130

10.1002/anie.201802231

10.1039/C6EE01867J

10.1021/jacs.7b09074

10.1038/s41929-018-0146-x

10.1126/sciadv.1500462

10.1002/anie.201602097

10.1038/ncomms9668

10.1021/acsnano.7b02148

10.1002/aenm.201703487

10.1038/s41929-018-0158-6

10.1038/s41929-017-0008-y

10.1016/j.nanoen.2016.12.056

10.1073/pnas.1800771115

10.1126/science.aan2255

10.1038/nature16542

10.1039/C6EE00811A

10.1021/cs401096c

10.1039/C7TA09082J

10.1016/j.ccr.2019.02.001

10.1021/acsami.8b14536

10.1038/s41560-017-0078-8

10.1039/C7EE03245E

10.1016/j.chempr.2017.09.014

10.1021/acs.chemrev.6b00715

10.1126/science.aam9147

10.1016/j.chempr.2018.05.006

10.1038/ncomms2929

10.1002/anie.201507381

10.1016/j.chempr.2017.12.021

10.1039/C6EE01786J

10.1021/acsnano.6b06392

10.1038/nchem.2740

10.1038/s41565-018-0089-z

10.1039/C5EE00751H

10.1038/ncomms14430

10.1021/jacs.7b08881

10.1002/anie.201812475

10.1002/adma.201803477

10.1021/acsenergylett.7b00111

10.1021/ja408329q

10.1002/aenm.201602086

10.1002/adma.201500033

10.1021/acsnano.6b08251

10.1038/s41565-018-0167-2

10.1021/acs.chemrev.6b00075

10.1039/C7CS00840F

10.1002/adma.201505281

10.1002/adma.201601960

10.1002/anie.201706467

10.1002/anie.201704358

10.1038/s41557-018-0100-1

10.1038/s41929-018-0195-1

10.1126/science.aaf5251

10.1002/adma.201705369

10.1039/c1cs15195a

10.1016/j.nantod.2010.12.008

10.1126/science.1140484

10.1038/nmat4281

10.1038/nnano.2011.42

10.1038/nmat3087

10.1038/nature07877

10.1002/anie.201204958

10.1039/C5SC00353A

10.1002/adma.201805062

10.1021/jacs.7b10663

10.1002/admi.201900273

10.1039/C5TA10551J

10.1002/anie.201400358

10.1039/C4EE00370E

10.1002/anie.201409524

10.1002/anie.201411450

10.1021/jacs.7b01530

10.1039/C5EE03316K

10.1039/C6TA04244A

10.1038/nenergy.2015.6

10.1016/j.nanoen.2018.07.062

10.1021/jacs.6b02990

10.1103/PhysRevLett.103.246804

10.1073/pnas.1416368111

10.1021/acs.nanolett.5b01205

10.1103/PhysRevB.80.245411

10.1039/C7SC01615H

10.1021/acs.nanolett.6b02052

10.1073/pnas.1701280114

10.1039/C6CS00424E