Interdiffusion along grain boundaries – Diffusion induced grain boundary migration, low temperature homogenization and reactions in nanostructured thin films

Progress in Materials Science - Tập 98 - Trang 625-674 - 2018
D.L. Beke1, Yu. Kaganovskii2, G.L. Katona1
1Department of Solid State Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
2Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

Tài liệu tham khảo

den Broeder, 1972, Interface reaction and a special form of grain diffusion in the Cr-W system, Acta Metall, 20, 319, 10.1016/0001-6160(72)90024-7 Balluffi, 1981, Mechanism for diffusion induced grain boundary migration, Acta Metall, 29, 493, 10.1016/0001-6160(81)90073-0 Hillert, 1978, Chemically induced grain boundary migration, Acta Metall, 26, 333, 10.1016/0001-6160(78)90132-3 Shewmon, 2016 Mittemejer EJ. Fundamentals of materials science. Heidelberg: Springer; 2010. http://doi.org/10.1007/978-3-642-10500-5. Yoon, 1995, Theories and observations of chemically induced interface migration, Int Mater Rev, 40, 149, 10.1179/imr.1995.40.4.149 Blendell JE, Handwerker CA, Shen CA, Dang N-D. Diffusion induced interface migration in ceramics. In: Pask JA, Evans AG, editors. Ceram. Microstruct. ’86 Role Interfaces, Boston, MA: Springer US; 1987, p. 541–8. http://doi.org/10.1007/978-1-4613-1933-7_55. Rabkin, 1995, Diffusion-induced grain boundary phenomena in metals and oxide ceramics, Mater Sci Monogr, 81, 353, 10.1016/S0166-6010(06)80013-5 Smith, 1986, Chemical effects on grain-boundray migration in Si and Ge, Trans Japan Inst Met Suppl, 27, 969 Mittemeijer, 1978, Dislocation wall formation during interdiffusion in thin bimetallic films, Thin Solid Films, 48, 356 Mittemeijer, 1980, Recrystallization and interdiffusion in thin bimetallic films, Thin Solid Films, 65, 125, 10.1016/0040-6090(80)90064-4 Kasen, 1986, An alternative view of diffusion-induced grain boundary motion, Philos Mag A Phys Condens Matter, Struct Defects Mech Prop, 54, L31 Handwerker CA, Blendell JE, Interrante C, Ahn T. The potential role of diffusion-induced grain-boundary migration in extended life prediction. In: Mat. Res. Soc. Symp. Proc., vol. 294; 1993. p. 625–35. Handwerker CA, Cahn JW. Microstructural control through diffusion-induced grain boundary migration. In: Mat. Res. Soc. Symp. Proc., vol. 106; 1988. p. 127–33. Doherty R. Grain boundary motion, diffusion-induced. In: Cahn RW, editor. Encycl. Mater. Sci En., Suppl. vol. 3. Oxford: Prgamon Press; 1992. p. 1695–8. King, 1987, Diffusion induced grain boundary migration, Int Mater Rev, 32, 173, 10.1179/095066087790150304 Handwerker CA. Diffusion-induced grain boundary migration in thin films. In: Gupta D, Ho P, editors. Diffus. Phenom. Thin Film Microelectron. Mater., Noyes, Park Rigde, NJ; 1989. p. 245–322. Shewmon, 1986, Role of moving boundaries in surface alloying, Trans Japan Inst Met Suppl, 27, 443 Tu KN. Ch.18 Interdiffusion in thin films. Ann Rev Mater Sci 1985;15:147–76. http://doi.org/10.4028/www.scientific.net/MSF.1.133. Beke, 2013, Kinetic pathways of diffusion and solid-state reactions in nanostructured thin films, Philos Mag, 93, 1960, 10.1080/14786435.2012.732712 YaYe, 1982, Paritskaya LN. Cold homogenization diring interdiffusion in dispersed media, Phys Met Met, 54, 120 Kaur, 1995 Van Landuyt J. Monographs on the physics and chemistry of materials, vol. 32. Clarendon Press; 1997. http://doi.org/10.1016/S0025-5408(96)00172-9. Hillert, 1983, On the driving force for diffusion induced grain boundary migration, Scr Metall, 17, 237, 10.1016/0036-9748(83)90105-9 Doherty R. Diffusive phase transformations in the solid state. In: Cahn RW, Haasen P, editors. Phys. Metall. Elsevier Science BV; 1996. p. 1461–8. Schmitz, 2010, The hidden link between diffusion-induced recrystallization and ideal strength of metals, Scr Mater, 63, 484, 10.1016/j.scriptamat.2010.05.011 den Broeder, 1985, Diffusion-induced grain boundary migration and recrystallization, exemplified by the system CuZn, Thin Solid Films, 124, 135, 10.1016/0040-6090(85)90256-1 Stephenson, 1988, Deformation during interdiffusion, Acta Metall, 36, 2663, 10.1016/0001-6160(88)90114-9 Beke, 2004, Diffusion-induced stresses and their relaxation, Mater Sci Eng A, 387–389, 4, 10.1016/j.msea.2004.01.065 Harrison, 1961, Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides, Trans Faraday Soc, 57, 1191, 10.1039/tf9615701191 Beke DL. Introduction. In: Beke DL, editor. Diffus. Semicond. Non-Metallic Solids, Subvolume A, Diffusion in Semiconductors., Heidelberg: Landolt-Börnstein New Series, Springer; 1998, p. 1-1–21. Rhines, 1938, A new type of structure in the alfa-copper-zink alloys, Nature, 141, 413, 10.1038/141413a0 Tu, 1977, Kinetics of thin-film reactions between Pb and the AgPd alloy, J Appl Phys, 48, 3400, 10.1063/1.324182 Cahn, 1979, Diffusion induced grain boundary migration, Scr Metall, 13, 503, 10.1016/0036-9748(79)90078-4 Yoon, 1979, Chemically driven growth of tungsten grains during sintering in liquid nickel, Acta Metall, 27, 973, 10.1016/0001-6160(79)90185-8 Sulonen, 1964, On the driving precipitation force of discontinuous and dissolution, Acta Metall, 12, 749, 10.1016/0001-6160(64)90227-5 Penrose, 2004, On the elastic driving force in diffusion-induced grain boundary motion, Acta Mater, 52, 3901, 10.1016/j.actamat.2004.05.004 Pan, 1982, Diffusion induced grain boundray migration in Au/Cu and Ag/Au thin films, Acta Metall, 30, 861, 10.1016/0001-6160(82)90084-0 Chung, 1992, The effect of external stress on the discontinuous precipitation in an Al·Zn alloy at high and low temperatures, Acta Metall Mater, 40, 2177, 10.1016/0956-7151(92)90135-2 Beke, 2006, Resolution of the diffusional paradox predicting infinitely fast kinetics on the nanoscale, Phys Rev B - Condens Matter Mater Phys, 73, 35426, 10.1103/PhysRevB.73.035426 Smith, 1981, On the mechanism of diffusion-induced boundary migration, Philos Mag A, 44, 333, 10.1080/01418618108239536 Jahn, 1986, Vacancy deposition during diffusion-induced grain boundary migration, Philos Mag A, 54, L3, 10.1080/01418618608242872 Shenouda, 2015, Nanoscale Kirkendall porosity formation during grain boundary intermixing in Au/Ag thin film system, Mater Lett, 145, 67, 10.1016/j.matlet.2015.01.044 Klinger, 2011, Theory of the Kirkendall effect during grain boundary interdiffusion, Acta Mater, 59, 1389, 10.1016/j.actamat.2010.10.070 Shewmon, 1981, Diffusion driven grain boundary migration, Acta Metall, 29, 1567, 10.1016/0001-6160(81)90038-9 Schmeltzle R, Giakupian B, Muschik T, Gust W, Fournelle RA. Diffusion induced grain boundary migration of symmetric and asymmetric (011) {011} tilt boundaries during the diffusion of Zn into Cu. Acta Metall Mater 1992;40:997–1007. http://doi.org/10.1016/0956-7151(92)90077-R. Vladymyrskyi, 2016, Low-temperature formation of the FePt phase in the presence of an intermediate Au layer in Pt /Au /Fe thin films, J Phys D Appl Phys, 49, 35003, 10.1088/0022-3727/49/3/035003 Molnár GY, Katona GL, Langer GA, Csík A, Chen YC, Beke DL. Low temperature homogenization in nanocrystalline PdCu thin film system. Mater Res Express 2015;2:105012-1-8. http://doi.org/10.1088/2053-1591/2/10/105012. Klinger, 2007, The effect of stress on grain boundary interdiffusion in a semi-infinite bicrystal, Acta Mater, 55, 4689, 10.1016/j.actamat.2007.04.039 Hwang, 1979, Measurement of grain boundary diffusion at low temperature by the surface accumulation method. II. Results for gold-silver system, J Appl Phys, 50, 1349, 10.1063/1.326115 Bokstein, 1974, Osmotic effect during interdiffusion in metals, Solid State Phys, 16, 2381 Herring, 1950, Diffusional viscosity of a polycrystalline solid, J Appl Phys, 21, 437, 10.1063/1.1699681 Geguzin, 1973, p74 Gao, 1999, Crack-like grain-boundary diffusion wedges in thin metal films, Acta Mater, 47, 2865, 10.1016/S1359-6454(99)00178-0 Daruka, 1996, Diffusion-induced bending of thin sheet couples: theory and experiments in Ti-Zr system, Acta Mater, 44, 4981, 10.1016/S1359-6454(96)00099-7 Brokman, 2001, Role of segregation in diffusion-induced grain boundary migration, Acta Mater, 49, 1, 10.1016/S1359-6454(00)00320-7 Rabkin, 1997, On dynamic segregation in the discontinuous precipitation reaction, Scr Mater, 37, 119, 10.1016/S1359-6462(97)00056-0 Grovenor, 1985, Diffusion induced grain boundary migration in thin gold/copper films, Acta Metall, 33, 579, 10.1016/0001-6160(85)90022-7 Li, 1985, A mechanism for the diffusion induced grain boundary motion, Scr Metall, 19, 689, 10.1016/0036-9748(85)90027-4 Molnár, 2016, Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry, Beilstein J Nanotechnol, 7, 474, 10.3762/bjnano.7.41 Parthasarathy, 1983, Diffusion induced grain boundary migration in NiC alloys, Scr Metall, 17, 943, 10.1016/0036-9748(83)90267-3 Tseng, 1986, Hydrogen induced grain boundary migration, Scr Metall, 20, 1423, 10.1016/0036-9748(86)90108-0 Rabkin, 1993, Theory of grain boundary motion during high-temperature DIGM, Interface Sci, 1, 133, 10.1007/BF00203602 Handwerker CA, Cahn JW, Yoon DN, Blendell JEN. In: Murch GE, Dayananda MA, editors. Diffusion Solids Recent Dev., Warrendale, PA, PA: TIMS-AIME; 1985, p. 275–92. Hirth, 1996, Steps, dislocations and disconnections as interface defects relating to structure and phase transformations, Acta Mater, 44, 4749, 10.1016/S1359-6454(96)00132-2 Nam, 2007, Molecular dynamics simulation of Ga penetration along grain boundaries in Al: a dislocation climb mechanism, Phys Rev Lett, 99, 1, 10.1103/PhysRevLett.99.025501 Joseph, 1999, Liquid metal embrittlement: a state-of-the-art appraisal, Eur Phys J Appl Phys, 5, 19, 10.1051/epjap:1999108 Bokstein, 1995, Liquid grooving at grain boundaries, Mater Sci Eng A, 203, 373, 10.1016/0921-5093(95)09830-5 Glickman, 2005, Fast penetration of Ga in Al: liquid metal embrittlement near the threshold, Zeitschitft Für Met, 96, 1204, 10.3139/146.101163 Rabkin, 1998, Coherency strain energy as a driving force for liquid grooving at grain boundaries, Scr Mater, 39, 685, 10.1016/S1359-6462(98)00229-2 Cahn, 1959, The kinetics of cellular segregation reactions, Acta Metall, 7, 18, 10.1016/0001-6160(59)90164-6 Tashiro, 1987, Observations of chemically induced grain boundary migration in several “new” systems, Scr Metall, 21, 361, 10.1016/0036-9748(87)90229-8 Rhee, 1989, The grain boundary migration induced by diffusional coherency strain in MoNi alloy, Acta Metall, 37, 221, 10.1016/0001-6160(89)90280-0 Baik, 1987, The effect of curvature on the grain boundary migration induced by diffusional coherency strain in Mo-Ni alloy, Acta Metall, 35, 2265, 10.1016/0001-6160(87)90073-3 Cahn, 1962, On spinodal decomposition in cubic crystals, Acta Metall, 10, 179, 10.1016/0001-6160(62)90114-1 Khachaturyan, 1967, Some questions concerning the theory of phase transformations in solids, Sov Phys Solid State, 8, 2163 Hilliard J. Phase transformations. In: Aronson H, editor., Metals Park, Ohio: ASM; 1970. p. 497–560. Larche, 1982, The effect of self-stress on diffusion in solids, Acta Metall, 30, 1835, 10.1016/0001-6160(82)90023-2 Tashiro, 1983, The role of volume diffusion in DIGM, a reappraisal, Scr Metall, 17, 455, 10.1016/0036-9748(83)90330-7 Rabkin, 1994, Gradient and coherency strain energies as driving forces for DIGM, Scr Metall Mater, 30, 1443, 10.1016/0956-716X(94)90243-7 Fournelle, 1993, A theory for diffusion induced grain boundary migration based on vacancy diffusion, Mater Sci Forum, 126–128, 383, 10.4028/www.scientific.net/MSF.126-128.383 Baither, 2008, Diffusion-induced recrystallization in silver-palladium layers, Scr Mater, 58, 99, 10.1016/j.scriptamat.2007.09.030 Kasprzak, 2011, Diffusion-induced recrystallization in nickel/palladium multilayers, Acta Mater, 59, 1734, 10.1016/j.actamat.2010.11.040 Kruse, 2010, Concentration characteristics of diffusion-induced recrystallization in Cu/CuAu multilayers of varying lattice mismatch, Scr Mater, 62, 144, 10.1016/j.scriptamat.2009.10.012 Hartung F, Schmitz G. Interdiffusion and reaction of metals: the influence and relaxation of mismatch-induced stress. Phys Rev B 2001;64:245418-1-245418-13. http://doi.org/10.1103/PhysRevB.64.245418. Kajihara, 2006, Chemical driving force for diffusion-induced recrystallization or diffusion-induced grain boundary migration in a binary system consisting of nonvolatile elements, Scr Mater, 54, 1767, 10.1016/j.scriptamat.2006.01.035 Kosevich VM, Gladkikh AN, Karpovskyi MV, Klimenko VN. Interdiffusion in two-layer Pd/Ag films II. “Cold” homogenization mechanisms. Interface Sci 1995;2:261–70. http://doi.org/10.1007/BF00215172. Suryanarayana, 1998 McCandlish LE, Seegopaul P, Wu L. Determination of the average WC grain size in nanostructured WC-Co powders by Fourier analysis of x-ray diffraction peak shapes. In: Kneringer G, Rodhammer P, editor. 14th Int. Plansee Semin. vol. 4, Reutte, Tyrol, Austria: Plansee AG; 1997, p. 363–75. Lönnberg, 1994, Characterization of milled Si3N4 powder using X-ray peak broadening and surface area analysis, J Mater Sci, 29, 3224, 10.1007/BF00356667 Aymard, 1996, Study of the formation reactions of silver-palladium alloys by grinding and post-milling isothermal annealing, J Alloys Compd, 238, 116, 10.1016/0925-8388(95)02174-4 Scherrer, 1918, Estimation of the size and internal structure of colloidal particles by means of röntgen, Göttinger Nachrichten Gesell, 2, 96 Sheng, 2009, Interdiffusion and stress development in Ni-Cu thin film diffusion couples, Zeitschrift Fur Krist Suppl, 30, 247, 10.1524/zksu.2009.0036 Shenouda, 2014, Production of NiSi phase by grain boundary diffusion induced solid state reaction between Ni2Si and Si(100) substrate, Appl Surf Sci, 320, 627, 10.1016/j.apsusc.2014.09.071 Karpovskii, 1983, Dudkin V. Apparatus for measuring the anisotropy of specific resistivity of thin films during condensation, Prib Tekh Eksp (in Russ), 2, 214 Oechsner H. Formation of sputtered molecules. In: Popović M, Krstić P, editors. Phys. Ioniz. Gases, Singapore: World Scientific; 1985. p. 571. Lakatos, 2012, Investigation of diffusional intermixing in Si/Co/Ta system by Secondary Neutral Mass Spectrometry, Vacuum, 86, 724, 10.1016/j.vacuum.2011.07.017 Lakatos, 2010, Nanoscale investigations of shift of individual interfaces in temperature induced processes of Ni-Si system by secondary neutral mass spectrometry, Appl Phys Lett, 97, 233103, 10.1063/1.3524491 Molnár, 2013, Evolution of concentration profiles in Pd-Cu systems studied by SNMS technique, Vacuum, 98, 70, 10.1016/j.vacuum.2013.04.015 Tynkova, 2014, Formation of CuxAu1-x phases by cold homogenization of Au/Cu nanocrystalline thin films, Beilstein J Nanotechnol, 5, 1491, 10.3762/bjnano.5.162 Oechsner, 2009, Quantitative characterization of solid state phases by secondary neutral mass spectrometry, J Appl Phys, 105, 63523, 10.1063/1.3099595 Müller, 1983, Quantitative secondary neutral mass spectrometry analysis of alloys and oxide-metal-interfaces, Microchim Acta, 10, 51, 10.1007/978-3-7091-3943-1_4 Glodán, 2012, Temperature-dependent formation and shrinkage of hollow shells in hemispherical Ag/Pd nanoparticles, Philos Mag, 92, 3806, 10.1080/14786435.2012.687841 den Broeder, 1983, Diffusion induced grain boundary migration and recrystallization in the CuNi system, Scr Metall, 17, 399, 10.1016/0036-9748(83)90181-3 Rabkin, 2000, Diffusion induced grain boundary porosity in NiAl, Scr Mater, 42, 1031, 10.1016/S1359-6462(00)00324-9 Garbovitskaya, 1979, Paritskaya L. Mutual diffusion in thin-films of face plane tape with overlappiing (Ag-Au system), Fiz Met I Met (in Russ, 47, 1244 Garbovitskaya, 1976, Study of frenkel and kirkendall effects in thin polycsytalline films (Cu-Ni system), Fiz Met I Met (in Russ), 42, 1214 Geguzin, 1956, On the effect of pressure on the interdiffusion in metals in relation to the formation of diffusional porosity, Dokl Akad Nauk SSSR (in Russ), 5, 839 d’Heurle, 1986, Kinetics of formation of silicides: a review, J Mater Res, 1, 205, 10.1557/JMR.1986.0205 Gusak, 2010 Zaporozhets, 2016, Competition of voiding and Kirkendall shift during compound growth in reactive diffusion-alternative models, Metallofiz I Noveishie Tekhnologii, 38, 1279, 10.15407/mfint.38.10.1279 Beke, 2014, Anomalous kinetics and regimes of growth of intermetallic phases during solid state reactions in nanosystems, Diffus Found, 2, 107, 10.4028/www.scientific.net/DF.2.107 Ogunseitan, 2007, Public health and environmental benefits of adopting lead-free solders, Jom, 59, 12, 10.1007/s11837-007-0082-8 Tu, 2001, Tin-lead (SnPb) solder reaction in flip chip technology, Mater Sci Eng R Reports, 34, 1, 10.1016/S0927-796X(01)00029-8 Laurila, 2005, Interfacial reactions between lead-free solders and common base materials, Mater Sci Eng R Reports, 49, 1, 10.1016/j.mser.2005.03.001 Ho, 2007, Interfacial reaction issues for lead-free electronic solders, Lead-Free Electron Solder A Spec Issue J Mater Sci Mater Electron, 155, 10.1007/978-0-387-48433-4_10 Wierzbicka-Miernik, 2012, Morphology and chemical composition of Cu/Sn/Cu and Cu(5 at-%Ni)/Sn/Cu(5 at-%Ni) interconnections, Sci Technol Weld Join, 17, 32, 10.1179/1362171811Y.0000000075 Lau, 1996 Poate, 1978 Farrell, 1974, Grain boundary diffusion and growth of intermetallic layers: Nb3Sn, J Appl Phys, 45, 4025, 10.1063/1.1663907 Corcoran, 1990, Grain boundary diffusion and growth of titanium silicide layers on silicon, J Electron Mater, 19, 1177, 10.1007/BF02673330 Zaka, 2016, Formation of Cu6Sn5 phase by cold homogenization in nanocrystalline Cu-Sn bilayers at room temperature, Microelectron Reliab, 56, 85, 10.1016/j.microrel.2015.10.018 Samy, 2015, Investigation of solid-state reaction in Ag/Sn nanostructured thin films at room temperature, Philos Mag, 95, 2990, 10.1080/14786435.2015.1083135 Xu, 2015, Solid-state reaction of electroplated thin film Au/Sn couple at low temperatures, J Alloys Compd, 619, 325, 10.1016/j.jallcom.2014.08.245 Paritskaya, 2017, Size-dependent kinetics of reactive diffusion in nano-grained Ag-Sn thin films, Mater Lett, 193, 292, 10.1016/j.matlet.2017.01.117 Tu, 1982, Kinetics of interfacial reaction in bimetallic CuSn thin films, Acta Metall, 30, 947, 10.1016/0001-6160(82)90201-2 Bhedwar, 1972, Kirkendall effect studies in copper-tin diffusion couples, Scr Met, 6, 919, 10.1016/0036-9748(72)90145-7 Onishi, 1975, Reaction-diffusion in the Cu-Sn system, J Chem Inf Model, 16, 539 Kaganovskii, 2008, Lateral diffusion spreading of two competitive intermetallic phases over free surface, Defect Diffus Forum, 277, 9, 10.4028/3-908451-55-8.9 Gleiter, 1989, Nanocrystalline materials, Prog Mater Sci, 33, 223, 10.1016/0079-6425(89)90001-7 Ciccariello, 1990, Lattice and grain boundary self-diffusion in Ni2Si: comparison with thin-film formation, J Appl Phys, 67, 3315, 10.1063/1.345367 Lis, 2014, Early stage growth characteristics of Ag3Sn intermetallic compounds during solid-solid and solid-liquid reactions in the Ag-Sn interlayer system: Experiments and simulations, J Alloys Compd, 617, 763, 10.1016/j.jallcom.2014.08.082 Kaganovskii, 2009, Grain boundary induced lateral propagation of intermetallic phases in nano-grained Cu-Sn thin film couples, J Nano Res, 7, 59, 10.4028/www.scientific.net/JNanoR.7.59 Huang, 2007, Effect of a thin W, Pt, Mo, and Zr interlayer on the thermal stability and electrical characteristics of NiSi, Microelectron Eng, 84, 678, 10.1016/j.mee.2006.11.006 Qu, 2004, Thermal stability, phase and interface uniformity of Ni-silicide formed by Ni-Si solid-state reaction, Thin Solid Films, 462–463, 146, 10.1016/j.tsf.2004.05.091 Gregoire, 2011, Gate shadowing effect on Ni(Pt)Si abnormal diffusion for sub-45 nm technologies, Microelectron Eng, 88, 548, 10.1016/j.mee.2010.07.017 O’Neill, 2008, Reduced self-heating by strained silicon substrate engineering, Appl Surf Sci, 254, 6182, 10.1016/j.apsusc.2008.02.172 Zhang, 2010, Morphological stability and specific resistivity of sub-10 nm silicide films of Ni1-x Ptx on Si substrate, Appl Phys Lett, 96, 9 De Keyser, 2010, Phase formation and thermal stability of ultrathin nickel-silicides on Si(100), Appl Phys Lett, 96, 4, 10.1063/1.3384997 Zhang, 2010, Exploitation of a self-limiting process for reproducible formation of ultrathin Ni1-x Ptx silicide films, Appl Phys Lett, 97, 1, 10.1063/1.3529459 Putero, 2010, First silicide formed by reaction of Ni(13%Pt) films with Si(100): nature and kinetics by in-situ X-ray reflectivity and diffraction, Scr Mater, 63, 24, 10.1016/j.scriptamat.2010.02.040 Gas, 1993, Formation of silicide thin films by solid state reaction, Appl Surf Sci, 73, 153, 10.1016/0169-4332(93)90160-D Barge, 1995, Analysis of the diffusion controlled growth of cobalt silicides in bulk and thin film couples, J Mater Res, 10, 1134, 10.1557/JMR.1995.1134 Hummada, 2011, Kinetic of formation of Ni and Pd silicide: determination of interfacial mobility and interdiffusion coefficient by in-situ tehcniques, Solid State Phenom, 172–74, 640, 10.4028/www.scientific.net/SSP.172-174.640 Nemouchi, 2005, Differential scanning calorimetry analysis of the linear parabolic growth of nanometric Ni silicide thin films on a Si substrate, Appl Phys Lett, 86, 41903, 10.1063/1.1852727 Piramanayagam S, Chong T, editors. Developments in data storage: materials perspective. New York: John Wiley & Sons; 2011. http://doi.org/10.1002/9781118096833. Lyubina L, Rellinghaus B, Gutfleisch O, Albrecht M. Structure and magnetic properties of L10-ordered Fe–Pt alloys and nanoparticles. In: Buschow K, editor. Handb. Magn. Mater., vol. 19. 1st ed., Amsterdam: North Holland; 2011, p. 291–395. McCallum, 2011, L10FePt based exchange coupled composite bit patterned films, Appl Phys Lett, 98, 2011, 10.1063/1.3599573 Brombacher, 2012, L10 FePtCu bit patterned media, Nanotechnology, 23, 25301, 10.1088/0957-4484/23/2/025301 Makarov, 2010, Perpendicular FePt-based exchange-coupled composite media, Appl Phys Lett, 96, 1, 10.1063/1.3309417 Yan, 2003, Highly oriented nonepitaxially grown L10 FePt films, J Appl Phys, 93, 8292, 10.1063/1.1556257 Farrow RFC, Weller D, Marks RF, Toney MF, Cebollada A, Harp GR. Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films. J Appl Phys 1996;79:5967. http://doi.org/10.1063/1.362122. Platt, 2002, L-10 ordering and microstructure of FePt thin films with Cu, Ag, Au additive, J Appl Phys, 92, 6104, 10.1063/1.1516870 Chen, 2000, Ordering and orientation of CoPt/SiO2 granular films with additive Ag, Appl Phys Lett, 76, 3218, 10.1063/1.126634 Tokuoka, 2014, Effect of Ag addition to L10 FePt and L10 FePd films grown by molecular beam epitaxy, J Appl Phys, 115, 1, 10.1063/1.4864251 Kitakami, 2001, Low-temperature ordering of L10-CoPt thin films promoted by Sn, Pb, Sb, and Bi additives, Appl Phys Lett, 78, 1104, 10.1063/1.1346628 You, 2006, Particulate structure of FePt thin films enhanced by Au and Ag alloying, J Appl Phys, 100, 1, 10.1063/1.2335600 Wei, 2008, Magnetization reversal and microstructure of FePt-Ag (001) particulate thin films for perpendicular magnetic recording media, J Appl Phys, 103, 1 Zhang, 2011, L10-ordered FePtAg-C granular thin film for thermally assisted magnetic recording media (invited), J Appl Phys, 109, 23 Feng, 2008, Magnetic properties and microstructure of FePt/Au multilayers with high perpendicular magnetocrystalline anisotropy, Appl Phys Lett, 93, 10 Feng, 2008, Improvement of magnetic property of L1[sub 0]-FePt film by FePt∕Au multilayer structure, J Appl Phys, 103, 23916, 10.1063/1.2828148 Yu, 2010, Structure and magnetic properties of magnetron-sputtered [(Fe/Pt/Fe)/Au]n multilayer films, J Magn Magn Mater, 322, 1770, 10.1016/j.jmmm.2009.12.027 Brombacher, 2012, FePtCu alloy thin films: Morphology, L10 chemical ordering, and perpendicular magnetic anisotropy, J Appl Phys, 112, 10.1063/1.4757038 Kai, 2004, Magnetic and electronic structures of FePtCu ternary ordered alloy, J Appl Phys, 95, 609, 10.1063/1.1635978 Maeda, 2002, Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu, Appl Phys Lett, 80, 2147, 10.1063/1.1463213 Maret, 2012, Anomalous x-ray diffraction measurements of long-range order in (001)-textured L10 FePtCu thin films, Phys Rev B, 86, 24204, 10.1103/PhysRevB.86.024204 Gilbert, 2013, Tuning magnetic anisotropy in (001) oriented L10 (Fe 1-xCux)55Pt45 films, Appl Phys Lett, 102, 1, 10.1063/1.4799651 Hsu, 2001, Effects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films, J Appl Phys, 89, 7068, 10.1063/1.1360683 Katona, 2014, Grain boundary diffusion induced reaction layer formation in Fe/Pt thin films, Appl Phys A Mater Sci Process, 115, 203, 10.1007/s00339-013-7949-z Katona, 201548, Diffusion and solid state reactions in Fe/Ag/Pt and FePt/Ag thin-film systems, J Phys D Appl Phys, 165001, (9p) Koch, 1993, The synthesis and structure of nanocrystalline materials produced by mechanical attrition: a review, Nanostructured Mater, 2, 109, 10.1016/0965-9773(93)90016-5 Suryanarayana, 1995, Nanocrystallline materials, Int Mater Rev, 40, 41, 10.1179/imr.1995.40.2.41 Suryanarayana C, Norton M. Chapter 4 in Mechanical alloying. Pergamon Mater Ser 1999;2:49–85. http://doi.org/10.1016/S1470-1804(99)80050-9. Upadhya K, editor. Plasma synthesis and processing of materials. Warrendale, PA, TMS; 1993. Suryanarayana, 2001, Mechanical alloying and milling, Prog Mater Sci, 46, 1, 10.1016/S0079-6425(99)00010-9 Paritskaya, 1990, Diffusion processes in dispersed systems (review), Sov Powder Metall Met Ceram, 29, 893, 10.1007/BF00794024 Novikov, 1983, Mechanism of low temperature diffusion activated by boundary migration, Fiz Tverd Tela (in Russian), 25, 3696 Bogdanov, 1990, Diffusion-induced decomposition of dispersed layered structures in the process of low-temperature homogenization, Phys Met Metallogr, 69, 115 Geguzin, 1984 Paritskaya, 1994, The effect of dispersion-hardening dopants on low temperature homogenization in dispersed powder systems, Sci Sinter, 26, 259 Chongmo, 1981, A metallographic study of diffusion-induced grain boundary migration in the Fe-Zn system, Acta Metall, 29, 1949, 10.1016/0001-6160(81)90032-8 Yamamoto, 2002, Kinetic features of diffusion induced recrystallization in the Cu(Ni) system at 873 K, Mater Sci Eng A, 333, 262, 10.1016/S0921-5093(01)01847-0 Inomata S, O M, Kajihara M. Diffusion-induced recrystallization in the Cu(Pd) system at complete solid-solution temperatures. J Mater Sci 2011;46:2410–21. http://doi.org/10.1007/s10853-010-5087-y. Takenaka, 2006, Fast penetration of Sn into Ag by diffusion induced recrystallization, Mater Trans, 47, 822, 10.2320/matertrans.47.822 Chen F Sen, King AH. Misorientation effects upon diffusion induced grain boundary migration in the copper-zinc system. Acta Metall 1988;36:2827–39. 10.1016/0001-6160(88)90129-0. Sivaiah, 2008, Diffusion induced grain boundary migration in the Cu – Zn system, Mater Charact, 59, 1141, 10.1016/j.matchar.2007.08.031 Goukon, 2000, Growth behavior of fine grains formed by diffusion induced recrystallization in the Cu(Zn) system, Acta Mater, 48, 2959, 10.1016/S1359-6454(00)00096-3 Kajihara, 1991, Chemical composition of regions alloyed by DIGM or DIR, Acta Metall Mater, 39, 2565, 10.1016/0956-7151(91)90071-8