Fast non-parametric simulation of 2D multi-layer cone penetration test (CPT) data without pre-stratification using Markov Chain Monte Carlo simulation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andrieu, 2003, An introduction to MCMC for machine learning, Mach. Learn., 50, 5, 10.1023/A:1020281327116
Ardalan, 2009, Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms, Comput. Geotech., 36, 616, 10.1016/j.compgeo.2008.09.003
Au, 2014
Cai, 2009, Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles, Eng. Geol., 104, 211, 10.1016/j.enggeo.2008.10.010
Candès, 2008, An introduction to compressive sampling, IEEE Signal Process. Mag., 25, 21, 10.1109/MSP.2007.914731
Candès, 2006, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52, 489, 10.1109/TIT.2005.862083
Cao, 2018, Bayesian identification of soil stratigraphy based on soil behaviour type index, Can. Geotech. J., 56, 570, 10.1139/cgj-2017-0714
Chen, 2018, Three-dimensional site characterization with borehole data–a case study of Suzhou area, Eng. Geol., 234, 65, 10.1016/j.enggeo.2017.12.019
Ching, 2006, Structural model updating and health monitoring with incomplete modal data using Gibbs sampler, Comput.-Aided Civil Infrastruct. Eng., 21, 242, 10.1111/j.1467-8667.2006.00432.x
Chiu, 2012, Reliability analysis of soil–water characteristics curve and its application to slope stability analysis, Eng. Geol., 135, 83, 10.1016/j.enggeo.2012.03.004
Clayton, 1995
Deng, 2017, Reliability evaluation of slope considering geological uncertainty and inherent variability of soil parameters, Comput. Geotech., 92, 121, 10.1016/j.compgeo.2017.07.020
Dietrich, 1993, A fast and exact method for multidimensional Gaussian stochastic simulations, Water Resour. Res., 29, 2861, 10.1029/93WR01070
Fenton, 1999, Random field modeling of CPT data, J. Geotech. Geoenviron., 125, 486, 10.1061/(ASCE)1090-0241(1999)125:6(486)
Firouzianbandpey, 2015, Effect of spatial correlation length on the interpretation of normalized CPT data using a Kriging approach, J. Geotech. Geoenviron., 141, 10.1061/(ASCE)GT.1943-5606.0001358
Gong, 2019, Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty, Eng. Geol., 259, 105162, 10.1016/j.enggeo.2019.105162
Hegazy, 2002, Objective site characterization using clustering of piezocone data, J. Geotech. Geoenviron., 128, 986, 10.1061/(ASCE)1090-0241(2002)128:12(986)
Hu, 2019, Bayesian network models for probabilistic evaluation of earthquake-induced liquefaction based on CPT and Vs databases, Eng. Geol., 254, 76, 10.1016/j.enggeo.2019.04.003
Ji, 2008, Bayesian compressive sensing, IEEE Trans. Signal Process., 56, 2346, 10.1109/TSP.2007.914345
Juang, 2000, CPT-based liquefaction analysis, Part 1: Determination of limit state function, Géotechnique, 50, 583, 10.1680/geot.2000.50.5.583
Juang, 2001, Three-dimensional site characterisation: Neural network approach, Géotechnique, 51, 799, 10.1680/geot.2001.51.9.799
Juang, 2018, Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis, Eng. Geol., 249, 148, 10.1016/j.enggeo.2018.12.010
Juang, 2019, Geological uncertainty: A missing element in geotechnical reliability analysis
Kroese, 2013
Lenz, 2007, Spatial variability of liquefaction potential in regional mapping using CPT and SPT data, Soil Dyn. Earthq. Eng., 27, 690, 10.1016/j.soildyn.2006.11.005
Liu, 2017, System reliability analysis and risk assessment of a layered slope in spatially variable soils considering stratigraphic boundary uncertainty, Comput. Geotech., 89, 213, 10.1016/j.compgeo.2017.05.014
Lloret-Cabot, 2014, On the estimation of scale of fluctuation in geostatistics, Georisk Assess. Manage. Risk Eng. Syst. Geohazards, 8, 129, 10.1080/17499518.2013.871189
MathWorks, 2020
Mayne, 2002, Subsurface investigations—geotechnical site characterization
NZGD
Petersen
Phoon, 1999, Characterization of geotechnical variability, Can. Geotech. J., 36, 612, 10.1139/t99-038
Phoon, 1999, Evaluation of geotechnical property variability, Can. Geotech. J., 36, 625, 10.1139/t99-039
Sert, 2016, Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability, Comput. Geotech., 75, 182, 10.1016/j.compgeo.2016.02.004
Stuedlein, 2012, Geotechnical characterization and random field modeling of desiccated clay, J. Geotech. Geoenviron., 138, 1301, 10.1061/(ASCE)GT.1943-5606.0000723
Wang, 2019, A Bayesian unsupervised learning approach for identifying soil stratification using cone penetration data, Can. Geotech. J., 56, 1184, 10.1139/cgj-2017-0709
Wang, 2016, Interpretation of soil property profile from limited measurement data: a compressive sampling perspective, Can. Geotech. J., 53, 1547, 10.1139/cgj-2015-0545
Wang, 2017, Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling, Géotechnique, 67, 523, 10.1680/jgeot.16.P.143
Wang, 2019, CPT-based subsurface soil classification and zonation in a 2D vertical cross-section using Bayesian compressive sampling, Can. Geotech. J.
Wang, 2013, Probabilistic identification of underground soil stratification using cone penetration tests, Can. Geotech. J., 50, 766, 10.1139/cgj-2013-0004
Wang, 2017, Probabilistic assessment of liquefiable soil thickness considering spatial variability and model and parameter uncertainties, Géotechnique, 67, 228, 10.1680/jgeot.15.P.219
Wang, 2018, Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation, Can. Geotech. J., 55, 862, 10.1139/cgj-2017-0254
Xiao, 2018, CPT-based probabilistic characterization of three-dimensional spatial variability using MLE, J. Geotech. Geoenviron., 144, 10.1061/(ASCE)GT.1943-5606.0001875
Zhao, 2020, Interpolation and stratification of multilayer soil property profile from sparse measurements using machine learning methods, Eng. Geol., 265, 105430, 10.1016/j.enggeo.2019.105430
Zhao, 2015, Bayesian sparse Tucker models for dimension reduction and tensor completion, arXiv preprint