Study on the influence of semiconductive property for the improvement of nanogenerator by wave mode approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Auld, 1973, 357
Hutson, 1962, Elastic wave propagation in piezoelectric semiconductors, J. Appl. Phys., 33, 40, 10.1063/1.1728525
Weinreich, 1959, Acoustoelectric effect in n-type Germanium, Phys. Rev., 114, 33, 10.1103/PhysRev.114.33
White, 1962, Amplification of ultrasonic waves in piezoelectric semiconductors, J. Appl. Phys., 33, 2547, 10.1063/1.1729015
Dietz, 1988, Acoustoelectric detection of ultrasound power with composite piezoelectric and semiconductor devices, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 35, 146, 10.1109/58.4164
Kino, 1976, Acoustoelectric interactions in acoustic-surface-wave devices, Proc. IEEE, 64, 724, 10.1109/PROC.1976.10202
Heyman, 1978, Phase insensitive acoustoelectric transducer, J. Acoust. Soc. Am., 64, 243, 10.1121/1.381968
Busse, 1981, Response characteristics of a finite aperture, phase insensitive ultrasonic receiver based upon the acoustoelectric effect, J. Acoust. Soc. Am., 70, 1370, 10.1121/1.387127
Wang, 2003, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices, Adv. Mater., 15, 432, 10.1002/adma.200390100
Wang, 2010, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics, Nano Today, 5, 540, 10.1016/j.nantod.2010.10.008
Kumar, 2011, Recent advances in power generation through piezoelectric nanogenerators, J. Mater. Chem., 21, 18946, 10.1039/c1jm13066h
Gao, 2009, Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire, Nano Lett., 9, 1103, 10.1021/nl803547f
Hu, 2010, Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects, ACS Nano, 4, 1234, 10.1021/nn901805g
Araneo, 2012, Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry, Adv. Mater., 24, 4719, 10.1002/adma.201104588
Shen, 2010, A general approach for fabricating arc-shaped composite nanowire arrays by pulsed laser deposition, Adv. Funct. Mater., 20, 703, 10.1002/adfm.200901546
Chen, 2007, Photoelastic effect in ZnO nanorods, Nanotechnology, 18, 225705, 10.1088/0957-4484/18/22/225705
Yoo, 2009, Modulation doping in ZnO nanorods for electrical nanodevice applications, Appl. Phys. Lett., 94, 223117, 10.1063/1.3148666
Xue, 2010, Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence, Nanotechnology, 21, 215701, 10.1088/0957-4484/21/21/215701
Gao, 2007, Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices, Adv. Mater., 19, 67, 10.1002/adma.200601162
Choi, 2009, Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods, Adv. Mater., 21, 2185, 10.1002/adma.200803605
Romano, 2011, Piezoelectric potential in vertically aligned nanowires for high output nanogenerators, Nanotechnology, 22, 465401, 10.1088/0957-4484/22/46/465401
Asthana, 2014, Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts, J. Mater. Chem. C, 2, 3995, 10.1039/C4TC00032C
Liao, 2014, Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting, Nano Res., 7, 917, 10.1007/s12274-014-0453-8
Wang, 2006, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire, Nano Lett., 6, 2768, 10.1021/nl061802g
Büyükköse, 2014, High-frequency acoustic charge transport in GaAs nanowires, Nanotechnology, 25, 135204, 10.1088/0957-4484/25/13/135204
Yu, 2010, Nanorod based Schottky contact gas sensors in reversed bias condition, Nanotechnology, 21, 265502, 10.1088/0957-4484/21/26/265502
Pierret, 1988
Wauer, 1997, Thickness vibrations of a piezo-semiconducting plate layer, Int. J. Eng. Sci., 35, 1387, 10.1016/S0020-7225(97)00060-8
Li, 2015, Effects of semiconduction on electromechanical energy conversion in piezoelectrics, Smart Mater. Struct., 24, 025021, 10.1088/0964-1726/24/2/025021
Gu, 2015, Shear-horizontal surface waves in a half-space of piezoelectric semiconductors, Philos. Mag. Lett., 95, 92, 10.1080/09500839.2015.1011249
Yang, 2006, Analysis of a circular piezoelectric semiconductor embedded in a piezoelectric semiconductor substrate, Arch. Appl. Mech., 76, 381, 10.1007/s00419-006-0035-7
Hu, 2007, A mode III crack in a piezoelectric semiconductor of crystals with 6 mm symmetry, Int. J. Solids Struct., 44, 3928, 10.1016/j.ijsolstr.2006.10.033
Sladek, 2014, Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals, CMES: Comput. Model. Eng. Sci., 99, 273
Sladek, 2014, Fracture analysis in piezoelectric semiconductors under a thermal load, Eng. Fract. Mech., 126, 27, 10.1016/j.engfracmech.2014.05.011
Zhao, 2016, Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors, Int. J. Solids Struct., 94, 50, 10.1016/j.ijsolstr.2016.05.009
Zhao, 2017, Penny-shaped cracks in three-dimensional piezoelectric semiconductors via Green's functions of extended displacement discontinuity, J. Intell. Mater. Syst. Struct., 28, 1775, 10.1177/1045389X16679294
Zhang, 2017, An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force, Smart Mater. Struct., 26, 025030, 10.1088/1361-665X/aa542e
Zhang, 2017, Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force, MRS Adv., 2, 3421, 10.1557/adv.2017.301
Gao, 2007, Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics, Nano Lett., 7, 2499, 10.1021/nl071310j
Fan, 2017, Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: part I--Linearized analysis, Nano Energy, 40, 82, 10.1016/j.nanoen.2017.07.049
De Lorenzi, 1975, On the interaction of the electromagnetic field with heat conducting deformable semiconductors, J. Math. Phys., 16, 938, 10.1063/1.522600
Maugin, 1986, Phenomenological theory of elastic semiconductors, Int. J. Eng. Sci., 24, 703, 10.1016/0020-7225(86)90106-0
Qin, 2011, Viscosity sensor using ZnO and AlN thin film bulk acoustic resonators with tilted polar c-axis orientations, J. Appl. Phys., 110, 094511, 10.1063/1.3657781
D.H. Navon, Semiconductor microdevices and materials, CBS College Publishing, New York, 1986.
Zhu, 2017, A numerical algorithm to solve multivariate transcendental equation sets in complex domain and its application in wave dispersion curve characterization, Acta Mech.
Kato, 2003, Effect of O/Zn flux ratio on crystalline quality of ZnO films grown by plasma-assisted molecular beam epitaxy, Jpn. J. Appl. Phys., 42, 2241, 10.1143/JJAP.42.2241
Ryu, 2003, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition, Appl. Phys. Lett., 83, 87, 10.1063/1.1590423
Özgür, 2005, A comprehensive review of ZnO materials and devices, J. Appl. Phys., 98, 11, 10.1063/1.1992666
Zhu, 2016, Wave propagation in piezoelectric layered structures of film bulk acoustic resonators, Ultrasonics, 67, 105, 10.1016/j.ultras.2016.01.004
Gao, 2009, Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor, J. Appl. Phys., 105, 113707, 10.1063/1.3125449
Wang, 2006, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312, 242, 10.1126/science.1124005
Van Zeghbroeck, 2004, 34
Lu, 2009, Piezoelectric nanogenerator using p-type ZnO nanowire arrays, Nano Lett., 9, 1223, 10.1021/nl900115y