Advancing tephrochronology as a global dating tool: Applications in volcanology, archaeology, and palaeoclimatic research

Quaternary Geochronology - Tập 40 - Trang 1-7 - 2017
C.S. Lane1
1Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom

Tài liệu tham khảo

Abbott, 2012, Volcanism and the Greenland ice-cores: the tephra record, Earth-Science Rev., 115, 173, 10.1016/j.earscirev.2012.09.001 Aitchison, 1992, On criteria for measures of compositional difference, Math. Geol., 24, 365, 10.1007/BF00891269 Alloway, 2017, Archaeological implications of a widespread 13th Century tephra marker across the central Indonesian archipelago, Quat. Sci. Rev., 155, 86, 10.1016/j.quascirev.2016.11.020 Begét, 1991, Old row tephra found at the palisades of the Yukon, Alaska, Quat. Res., 35, 291, 10.1016/0033-5894(91)90074-F Biass, 2014, A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes – Part 1: hazard assessment, Nat. Hazards Earth Syst. Sci., 14, 2265, 10.5194/nhess-14-2265-2014 van der Bilt, 2017, Ultra-distal Kamchatkan ash on Arctic Svalbard: towards hemispheric cryptotephra correlation, Quat. Sci. Rev., 164, 230, 10.1016/j.quascirev.2017.04.007 Blegen, 2015, Distal tephras of the eastern Lake Victoria basin, equatorial East Africa: correlations, chronology and a context for early modern humans, Quat. Sci. Rev., 122, 89, 10.1016/j.quascirev.2015.04.024 Blockley, 2005, A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments, Quat. Sci. Rev., 24, 1952, 10.1016/j.quascirev.2004.12.008 Blockley, 2008, The Middle to Upper Paleolithic transition: dating, stratigraphy, and isochronous markers, J. Hum. Evol., 55, 764, 10.1016/j.jhevol.2008.08.009 Blockley, 2012, Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE event stratigraphy to 48,000 b2k, Quat. Sci. Rev., 36, 2, 10.1016/j.quascirev.2011.09.017 Blockley, 2014, Tephrochronology and the extended INTIMATE (integration of ice-core, marine and terrestrial records) event stratigraphy 8–128 ka b2k, Quat. Sci. Rev., 106, 88, 10.1016/j.quascirev.2014.11.002 Bourne, 2016, Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes, Sci. Rep., 6, 29837, 10.1038/srep29837 Coulter, 2009, The characterization and significance of a MIS 5a distal tephra on mainland Australia, Quat. Sci. Rev., 28, 1825, 10.1016/j.quascirev.2009.04.018 Damaschke, 2017, A 30,000 yr high-precision eruption history for the andesitic Mt Taranaki, North Island, New Zealand, Quat. Res., 87, 1, 10.1017/qua.2016.11 Danišík, 2012, Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U-Th)/He zircon ages, Earth Planet. Sci. Lett., 349–350, 240, 10.1016/j.epsl.2012.06.041 Danišík, 2017, Application of combined U-Th-disequilibrium/U-Pb and (U-Th)/He zircon dating to tephrochronology, Quat. Geochronol., 40, 23, 10.1016/j.quageo.2016.07.005 D’Antonio, 2016, Combined Sr-Nd isotopic and geochemical fingerprinting as a tool for identifying tephra layers: application to deep-sea cores from eastern Mediterranean Sea, Chem. Geol., 443, 121, 10.1016/j.chemgeo.2016.09.022 Davies, 2015, Cryptotephras: the revolution in correlation and precision dating, J. Quat. Sci., 30, 114, 10.1002/jqs.2766 Davies, 2012, Integrating the INTIMATE records using tephrochronology: rising to the challenge, Quat. Sci. Rev., 36, 11, 10.1016/j.quascirev.2011.04.005 Davies, 2014, A North Atlantic tephrostratigraphical framework for 130–60 ka b2k: new tephra discoveries, marine-based correlations, and future challenges, Quat. Sci. Rev., 106, 101, 10.1016/j.quascirev.2014.03.024 Davies, 2016, Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years, Quat. Sci. Rev., 146, 28, 10.1016/j.quascirev.2016.05.026 Deino, 2012, 40Ar/39Ar dating of Bed I, Olduvai Gorge, Tanzania, and the chronology of early Pleistocene climate change, J. Hum. Evol., 63, 251, 10.1016/j.jhevol.2012.05.004 Dugmore, 1989, Icelandic volcanic ash in Scotland, Scott. Geogr. Mag., 105, 168 Fontijn, 2014, Late Quaternary tephrostratigraphy of southern Chile and Argentina, Quat. Sci. Rev., 89, 70, 10.1016/j.quascirev.2014.02.007 Friedrich, 2014, The olive branch chronology stands irrespective of tree-ring counting, Antiquity, 88, 274, 10.1017/S0003598X00050377 Froese, 2008, Global tephra studies: John Westgate and Andrei Sarna-wojcicki commemorative volume, Quat. Int., 178, 1, 10.1016/j.quaint.2007.12.005 Griggs, 2014, Optimising the use of marine tephrochronology in the north Atlantic: a detailed investigation of the Faroe marine ash zones II, III and IV, Quat. Sci. Rev., 106, 122, 10.1016/j.quascirev.2014.04.031 Griggs, 2015, Visualizing tephra deposits and sedimentary processes in the marine environment: the potential of X-ray microtomography, Geochem. Geophys. Geosys., 16, 4329, 10.1002/2015GC006073 Hall, 2014 Hogg, 1983, Late Quaternary tephras of Coromandel Peninsula, North Island, New Zealand: a mixed peralkaline and calkalkaline tephra sequence, N. Z. J. Geol. Geophys., 26, 163, 10.1080/00288306.1983.10422515 Hogg, 2012, Revised calendar date for the Taupo eruption derived by 14C wiggle-matching using a New Zealand kauri 14C calibration data set, Holocene, 22, 439, 10.1177/0959683611425551 Hopkins, 2015, Tools and techniques for developing tephra stratigraphies in lake cores: a case study from the basaltic Auckland Volcanic Field, New Zealand, Quat. Sci. Rev., 123, 58, 10.1016/j.quascirev.2015.06.014 Howe, 2015, Time scales of intra-oceanic arc magmatism from combined U-Th and (U-Th)/He zircon geochronology of Dominica, Lesser Antilles, Geochem. Geophys. Geosys., 16, 347, 10.1002/2014GC005636 Ito, 2017, Zircon U–Pb dating using LA-ICP-MS: Quaternary tephras in Boso Peninsula, Japan, Quat. Geochronol., 40, 12, 10.1016/j.quageo.2016.07.002 Iverson, 2017, Advancements and best practices for analysis and correlation of tephra and cryptotephra in ice, Quat. Geochronol., 40, 45, 10.1016/j.quageo.2016.09.008 Jensen, 2014, Transatlantic distribution of the Alaskan white river ash, Geology, 42, 875, 10.1130/G35945.1 Johansson, 2017, Compositions of glass in proximal tephras from eruptions in the Azores archipelago and their links with distal sites in Ireland, Quat. Geochronol., 40, 120, 10.1016/j.quageo.2016.07.006 Kuehn, 2010, Tephra from ice—a simple method to routinely mount, polish, and quantitatively analyze sparse fine particles, Microsc. Microanal., 16, 218, 10.1017/S1431927609991322 Kuehn, 2011, The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: results and recommendations, Quat. Int., 246, 19, 10.1016/j.quaint.2011.08.022 Kurbatov, 2006, A 12,000 year record of explosive volcanism in the Siple Dome Ice Core, West Antarctica, J. Geophys. Res. Atmos., 111, D12307, 10.1029/2005JD006072 Kyle, 2011, Geochemical characterization of marker tephra layers from major Holocene eruptions, Kamchatka Peninsula, Russia, Int. Geol. Rev., 53, 1059, 10.1080/00206810903442162 Lane, 2012, Was the 12.1 ka icelandic vedde ash one of a kind?, Quat. Sci. Rev., 33, 87, 10.1016/j.quascirev.2011.11.011 Lane, 2013, Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka, Proc. Natl. Acad. Sci., 110, 8025, 10.1073/pnas.1301474110 Lane, 2014, Cryptotephra as a dating and correlation tool in archaeology, J. Archaeol. Sci., 42, 42, 10.1016/j.jas.2013.10.033 Lane, 2015, The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder Maar, Germany, Quat. Sci. Rev., 122, 192, 10.1016/j.quascirev.2015.05.025 Lind, 2016, Revisiting the Borrobol Tephra, Boreas, 45, 629, 10.1111/bor.12176 Lowe, 2008, Globalization of tephrochronology: new views from Australasia, Prog. Phys. Geogr., 32, 311, 10.1177/0309133308091949 Lowe, 2011, Tephrochronology and its application: a review, Quat. Geochronol., 6, 107, 10.1016/j.quageo.2010.08.003 Lowe, 2015, IFG on tephrochrononology and volcanism (INTAV) project “Enhancing tephrochronology as a global research tool through improved fingerprinting and correlation techniques and uncertainty modelling (phase II)” (INTREPID Tephra-II, INQUA-1307s): final report, Quat. Perspect., 22, 12 Lowe, 2001, A summary of terminology used in tephra-related studies, Les Dossiers l’Archaéo-Logis, 1, 17 Lowe, 2015, Tephrochronology, 783 Lowe, 2008, Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE, Quat. Sci. Rev., 27, 95, 10.1016/j.quascirev.2007.01.013 Lowe, D.J., Davies, S.M., Moriwaki, H., Pearce, N.J., Suzuki, T. (Eds), 2011a. Enhancing tephrochronology and its application (INTREPID project): Hiroshi Machida commemorative volume. Quat. Int. 246, 1–395. Lowe, 2011, [Preface] Enhancing tephrochronology and its application (INTREPID project): Hiroshi Machida commemorative volume, Quat. Int., 246, 1, 10.1016/j.quaint.2011.08.012 Lowe, 2013, Ages of 24 widespread tephras erupted since 30,000 years ago in New Zealand, with re-evaluation of the timing and palaeoclimatic implications of the Lateglacial cool episode recorded at Kaipo bog, Quat. Sci. Rev., 74, 170, 10.1016/j.quascirev.2012.11.022 Lowe, 2015, The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100 ka, Quat. Sci. Rev., 118, 1, 10.1016/j.quascirev.2015.04.006 Machida, 1999, The stratigraphy, chronology and distribution of distal marker-tephras in and around Japan, Glob. Planet. Change, 21, 71, 10.1016/S0921-8181(99)00008-9 Mackay, 2016, A mid to late Holocene cryptotephra framework from eastern North America, Quat. Sci. Rev., 132, 101, 10.1016/j.quascirev.2015.11.011 Magill, 2015, Simulating a multi-phase tephra fall event: inversion modelling for the 1707 Hoei eruption of Mount Fuji, Japan, Bull. Volcanol., 77, 1, 10.1007/s00445-015-0967-2 Marcaida, 2014, Geochemical fingerprinting of Wilson Creek formation tephra layers (Mono Basin, California) using titanomagnetite compositions, J. Volcanol. Geotherm. Res., 273, 1, 10.1016/j.jvolgeores.2013.12.008 Martin-Jones, 2017, Glass compositions and tempo of post-17 ka eruptions from the Afar Triangle recorded in sediments from lakes Ashenge and Hayk, Ethiopia, Quat. Geochronol., 37, 15, 10.1016/j.quageo.2016.10.001 Matsu’ura, 2011, Late Quaternary cryptotephra detection and correlation in loess in northeastern Japan using cummingtonite geochemistry, Quat. Res., 75, 624, 10.1016/j.yqres.2010.12.004 Matsu’ura, 2012, Detection and correlation of widespread cryptotephras in middle Pleistocene loess in NE Japan using cummingtonite geochemistry, J. Asian Earth Sci., 60, 49, 10.1016/j.jseaes.2012.07.022 Matsu’ura, 2014, Late Quaternary tephrostratigraphy and cryptotephrostratigraphy of deep-sea sequences (Chikyu C9001C cores) as tools for marine terrace chronology in NE Japan, Quat. Geochronol., 23, 63, 10.1016/j.quageo.2014.06.001 Matsu’ura, 2017, Using tephrostratigraphy and cryptotephrostratigraphy to re-evaluate and improve the Middle Pleistocene age model for marine sequences in northeast Japan (Chikyu C9001C), Quat. Geochronol., 40, 129, 10.1016/j.quageo.2016.11.001 McLean, 2016, Identification of the Changbaishan ‘Millennium’ (B-Tm) eruption deposit in the Lake Suigetsu (SG06) sedimentary archive, Japan: synchronisation of hemispheric-wide palaeoclimate archives, Quat. Sci. Rev., 150, 301, 10.1016/j.quascirev.2016.08.022 Morgan, 2017, 40Ar/39Ar and K–Ar geochronology, 27 Moriwaki, 2016, The role of tephras in developing a high-precision chronostratigraphy for palaeoenvironmental reconstruction and archaeology in southern Kyushu, Japan, since 30,000 cal. BP: an integration, Quat. Int., 397, 79, 10.1016/j.quaint.2015.05.069 Narcisi, 2010, Extended East Antarctic ice-core tephrostratigraphy, Quat. Sci. Rev., 29, 21, 10.1016/j.quascirev.2009.07.009 Narcisi, 2012, A 16,000-yr tephra framework for the Antarctic ice sheet: a contribution from the new Talos Dome core, Quat. Sci. Rev., 49, 52, 10.1016/j.quascirev.2012.06.011 Pearce, 2014, Towards a protocol for the trace element analysis of glass from rhyolitic shards in tephra deposits by laser ablation ICP-MS, J. Quat. Sci., 29, 627, 10.1002/jqs.2727 Pearce, 2014, 29 Pearce, 2014, Individual glass shard trace element analyses confirm that all known Toba tephra reported from India is from the c. 75-ka Youngest Toba eruption, J. Quat. Sci., 29, 729, 10.1002/jqs.2741 Petrelli, 2017, Combining machine learning techniques, microanalyses and large geochemical datasets for tephrochronological studies in complex volcanic areas: new age constraints for the Pleistocene magmatism of central Italy, Quat. Geochronol., 40, 33, 10.1016/j.quageo.2016.12.003 Plunkett, 2017, Obituary – Emerita Professor Valerie Anne Hall BSc PhD FSA FHEA (1946–2016), Quat. Geochronol., 40, 8, 10.1016/j.quageo.2016.09.005 Pollard, 2006, Some numerical considerations in the geochemical analysis of distal microtephra, Appl. Geochem., 21, 1692, 10.1016/j.apgeochem.2006.07.007 Ponomareva, 2015, Tephra without borders: far-reaching clues into past explosive eruptions, Front. Earth Sci., 3 Pouget, 2014, Use of principal component analysis for identification of Rockland and Trego Hot springs tephras in the Hat creek Graben, northeastern California, USA, Quat. Res., 81, 125, 10.1016/j.yqres.2013.10.012 Pyne-O’Donnell, 2012, High-precision ultra-distal Holocene tephrochronology in North America, Quat. Sci. Rev., 52, 6, 10.1016/j.quascirev.2012.07.024 Pyne-O’Donnell, 2016, West Coast volcanic ashes provide a new continental-scale Lateglacial isochron, Quat. Sci. Rev., 142, 16, 10.1016/j.quascirev.2016.04.014 Ramsey, 2015, The RESET tephra database and associated analytical tools, Quat. Sci. Rev., 118, 33, 10.1016/j.quascirev.2014.11.008 Rawson, 2016, The magmatic and eruptive response of arc volcanoes to deglaciation: insights from southern Chile, Geology, 44, 251, 10.1130/G37504.1 Riede, 2013, Tephra, tephrochronology and archaeology–a (re-) view from Northern Europe, Herit. Sci., 1, 15, 10.1186/2050-7445-1-15 Schmid, 2017, Tephra isochrons and chronologies of colonisation, Quat. Geochronol., 40, 56, 10.1016/j.quageo.2016.08.002 Shane, 2013, Longevity of a small shield volcano revealed by crypto-tephra studies (Rangitoto volcano, New Zealand): change in eruptive behavior of a basaltic field, J. Volcanol. Geotherm. Res., 257, 174, 10.1016/j.jvolgeores.2013.03.026 Smith, 2017, First Holocene cryptotephras in mainland Australia reported from sediments at Lake Keilambete, Victoria, Australia, Quat. Geochronol., 40, 82, 10.1016/j.quageo.2016.08.007 Smith, 2013, Identification and correlation of visible tephras in the Lake Suigetsu SG06 sedimentary archive, Japan: chronostratigraphic markers for synchronising of east Asian/west Pacific palaeoclimatic records across the last 150 ka, Quat. Sci. Rev., 67, 121, 10.1016/j.quascirev.2013.01.026 Smith, 2016, Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: implications for ultra-distal ash transport during the large caldera-forming eruption, Bull. Volcanol., 78, 1, 10.1007/s00445-016-1037-0 Song, 2000, Newly discovered eastern dispersal of the youngest Toba Tuff, Mar. Geol., 167, 303, 10.1016/S0025-3227(00)00034-7 Staff, 2013, The multiple chronological techniques applied to the Lake Suigetsu SG06 sediment core, central Japan, Boreas, 42, 259, 10.1111/j.1502-3885.2012.00278.x Sun, 2014, Ash from Changbaishan Millennium eruption recorded in Greenland ice: implications for determining the eruption’s timing and impact, Geophys. Res. Lett., 41, 694, 10.1002/2013GL058642 Sun, 2017, The first tephra evidence for a Late Glacial explosive volcanic eruption in the Arxan-Chaihe volcanic field (ACVF), northeast China, Quat. Geochronol., 40, 109, 10.1016/j.quageo.2016.10.003 Suzuki, 2011, Hiroshi Machida – respected tephrochronologist, teacher, leader, Quat. Int., 246, 6, 10.1016/j.quaint.2011.08.013 Swindles, 2011, A 7000 yr perspective on volcanic ash clouds affecting northern Europe, Geology, 39, 887, 10.1130/G32146.1 Timms, 2017, A high-resolution tephrostratigraphy from Quoyloo Meadow, Orkney, Scotland: Implications for the tephrostratigraphy of NW Europe during the Last Glacial-Interglacial Transition, Quaternary Geochronology, 40, 67, 10.1016/j.quageo.2016.06.004 Tomlinson, 2012, Geochemistry of the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: implications for the dispersal of Plinian and co-ignimbritic components of explosive eruptions, Geochimica Cosmochimica Acta, 93, 102, 10.1016/j.gca.2012.05.043 Tomlinson, 2015, The major and trace element glass compositions of the productive Mediterranean volcanic sources: tools for correlating distal tephra layers in and around Europe, Quat. Sci. Rev., 118, 48, 10.1016/j.quascirev.2014.10.028 Turney, 1998, Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments, J. Paleolimnol., 19, 199, 10.1023/A:1007926322026 Turney, 1997, The use of microtephra horizons to correlate Late-glacial lake sediment successions in Scotland, J. Quat. Sci., 12, 525, 10.1002/(SICI)1099-1417(199711/12)12:6<525::AID-JQS347>3.0.CO;2-M Watson, 2015, 5 Westgate, 2013, Fission-track dating, 643 Zawalna-Geer, 2016, Extracting a primary Holocene crytoptephra record from Pupuke maar sediments, Auckland, New Zealand, J. Quat. Sci., 31, 442, 10.1002/jqs.2866 Zdanowicz, 1999, Mount Mazama eruption: calendrical age verified and atmospheric impact assessed, Geology, 27, 621, 10.1130/0091-7613(1999)027<0621:MMECAV>2.3.CO;2