Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting

Nano Energy - Tập 44 - Trang 353-363 - 2018
Aiping Wu1,2, Ying Xie1, Hui Ma1, Chungui Tian1, Ying Gu1, Haijing Yan1, Xiaomeng Zhang1, Guoyu Yang2, Honggang Fu1
1Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of China, Heilongjiang University, Harbin 150080, China
2Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Institute of Technology, Beijing 100081, China

Tài liệu tham khảo

Turner, 1999, Science, 285, 687, 10.1126/science.285.5428.687 Dresselhaus, 2001, Nature, 414, 332, 10.1038/35104599 Greeley, 2006, Nat. Mater., 5, 909, 10.1038/nmat1752 Faber, 2014, Energy Environ. Sci., 7, 3519, 10.1039/C4EE01760A Jiao, 2015, Chem. Soc. Rev., 44, 2060, 10.1039/C4CS00470A Tang, 2015, Angew. Chem. Int. Ed., 54, 9351, 10.1002/anie.201503407 Sivanantham, 2016, Adv. Funct. Mater., 26, 4661, 10.1002/adfm.201600566 Vrubel, 2012, Angew. Chem. Int. Ed., 51, 12875, 10.1002/ange.201207111 Jia, 2016, Adv. Energy Mater., 6, 1502585, 10.1002/aenm.201502585 Stamenkovic, 2007, Nat. Mater., 6, 241, 10.1038/nmat1840 McCrory, 2013, J. Am. Chem. Soc., 135, 16977, 10.1021/ja407115p Cao, 2013, J. Am. Chem. Soc., 135, 19186, 10.1021/ja4081056 Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s Li, 2016, J. Am. Chem. Soc., 138, 16632, 10.1021/jacs.6b05940 Wu, 2016, Nanoscale, 8, 11052, 10.1039/C6NR02803A Wu, 2017, Nano Energy, 32, 511, 10.1016/j.nanoen.2017.01.014 Huang, 2016, ACS Nano, 10, 11337, 10.1021/acsnano.6b06580 Wan, 2014, Angew. Chem., 126, 6525, 10.1002/ange.201402998 Popczun, 2013, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e Tang, 2017, Adv. Mater., 29, 1602441, 10.1002/adma.201602441 Wang, 2017, ACS Nano, 11, 4358, 10.1021/acsnano.7b01946 Wang, 2017, Angew. Chem. Int. Ed., 56, 5867, 10.1002/anie.201701477 Zhang, 2017, Adv. Energy Mater., 7, 1602547, 10.1002/aenm.201602547 Ping, 2016, Adv. Mater., 28, 7640, 10.1002/adma.201601019 Feng, 2016, Adv. Mater., 28, 4698, 10.1002/adma.201600054 Feng, 2016, Angew. Chem. Int. Ed., 55, 3694, 10.1002/anie.201511447 Shen, 2017, ACS Energy Lett., 2, 1327, 10.1021/acsenergylett.7b00229 Xing, 2014, J. Mater. Chem. A, 2, 18435, 10.1039/C4TA03776F Li, 2015, J. Am. Chem. Soc., 137, 14305, 10.1021/jacs.5b07756 Gao, 2016, Angew. Chem. Int. Ed., 55, 6290, 10.1002/anie.201600525 Jin, 2016, Adv. Mater., 28, 3785, 10.1002/adma.201506314 Yu, 2017, Chem. Sci., 8, 968, 10.1039/C6SC03356C Zhu, 2017, Angew. Chem. Int. Ed., 56, 1324, 10.1002/anie.201610413 Ledendecker, 2015, Angew. Chem. Int. Ed., 54, 12361, 10.1002/anie.201502438 Z.H. Zhao, D.E. Schipper, A.P. Leitner, H. Thirumalai, J.H. Chen, L.X. Xie, F. Qin, M.K. Alam, L.C. Grabow, S. Chen, D.Z. Wang, Z.F. Ren, Z.M. Wang, K.H. Whitmire, J.M. Bao, Nano Energy, 〈http://dx.doi.org/10.1016/j.nanoen.2017.07.027〉. Jiang, 2015, Angew. Chem., 127, 6349, 10.1002/ange.201501616 Liang, 2016, Nano Lett., 16, 7718, 10.1021/acs.nanolett.6b03803 Huang, 2017, Nano Energy, 34, 472, 10.1016/j.nanoen.2017.03.016 Tang, 2017, J. Am. Chem. Soc., 139, 8320, 10.1021/jacs.7b03507 Lai, 2016, Energy Environ. Sci., 9, 1210, 10.1039/C5EE02996A Jiang, 2016, Angew. Chem., 128, 15466, 10.1002/ange.201607651 Fang, 2016, Nano Energy, 27, 3247, 10.1016/j.nanoen.2016.07.005 Zhang, 2016, Adv. Energy Mater., 6, 1600221, 10.1002/aenm.201600221 Wang, 2016, Nano Energy, 22, 111, 10.1016/j.nanoen.2016.02.023 Wang, 2016, ACS Nano, 10, 10397, 10.1021/acsnano.6b06259 Xu, 2015, J. Am. Chem. Soc., 137, 4119, 10.1021/ja5119495 Ouyang, 2017, Small, 1604265, 10.1002/smll.201604265 Nandi, 2016, Adv. Energy Mater., 6, 1601189, 10.1002/aenm.201601189 Yang, 2017, Nano Energy, 36, 85, 10.1016/j.nanoen.2017.04.032 Jiang, 2017, Angew. Chem. Int. Ed., 56, 6572, 10.1002/anie.201703183 Masa, 2017, Adv. Energy Mater., 1700381, 10.1002/aenm.201700381 Balogun, 2016, J. Mater. Chem. A, 4, 9844, 10.1039/C6TA02492K Zheng, 2014, Nat. Commun., 5, 3783, 10.1038/ncomms4783 Liu, 2017, Adv. Mater., 29, 1606521, 10.1002/adma.201606521 Wu, 2017, Nano Energy, 34, 8, 10.1016/j.nanoen.2017.02.004 Gao, 2016, J. Mater. Chem. A, 4, 17363, 10.1039/C6TA07883D Xiao, 2014, Appl. Catal. B: Environ., 154–155, 232, 10.1016/j.apcatb.2014.02.020 Loh, 2010, Nat. Chem., 2, 1015, 10.1038/nchem.907 Acik, 2010, Nat. Mater., 9, 840, 10.1038/nmat2858 Wang, 2016, Adv. Energy Mater., 1601390 Zhou, 2016, Nano Energy, 28, 29, 10.1016/j.nanoen.2016.08.027 Xu, 2016, Angew. Chem. Int. Ed., 55, 6502, 10.1002/anie.201600686 Chen, 2012, Angew. Chem. Int. Ed., 51, 6131, 10.1002/anie.201200699 Kibsgaard, 2014, Nat. Chem., 6, 248, 10.1038/nchem.1853 Louie, 2013, J. Am. Chem. Soc., 135, 12329, 10.1021/ja405351s Chen, 2015, Angew. Chem., 127, 14923, 10.1002/ange.201506480 Chen, 2017, Chem. Commun., 53, 9566, 10.1039/C7CC05172G Zhang, 2016, J. Mater. Chem. A, 4, 5713, 10.1039/C6TA00356G Zhang, 2017, Nat. Commun., 8, 15437, 10.1038/ncomms15437 Liao, 2012, J. Am. Chem. Soc., 134, 13296, 10.1021/ja301567f Chen, 2016, Adv. Mater., 28, 7527, 10.1002/adma.201601663 Chen, 2017, Adv. Mater., 1701584, 10.1002/adma.201701584