Efficient nanostructured quasi-single crystalline silicon solar cells by metal-catalyzed chemical etching

Solar Energy Materials and Solar Cells - Tập 164 - Trang 40-46 - 2017
Qiang Wang1,2, Chengfeng Pan1, Kexun Chen1, Shuai Zou1, Mingrong Shen1, Xiaodong Su1
1College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, 1 Shizi Street, Suzhou 215006, China
2School of Electronic and Information, Nantong University, Nantong 226019, China

Tài liệu tham khảo

Yu, 2016, Solar photovoltaic energy policy and globalization: a multiperspective approach with case studies of Germany, Japan, and China, Prog. Photovolt.: Res. Appl., 24, 458, 10.1002/pip.2560 Tao, 2016, Large area tunnel oxide passivated rear contact n-typeSi solar cells with 21.2% efficiency, Prog. Photovolt.: Res. Appl., 24, 830, 10.1002/pip.2739 T. Kinoshita, D. Fujishima, A. Yano, A. Ogane, S. Tohoda, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, H.M. Sakata, M. Taguchi, The approaches for high efficiency HIT™ solar cell with very thin (<100μm) silicon wafer over 23%, in: Proceeding of the 26th EU-PVSEC, Hamburg 871-874, 2011. Green, 2015, The passivated emitter and rear cell (PERC): from conception to mass production, Sol. Energy Mater. Sol. Cells, 143, 190, 10.1016/j.solmat.2015.06.055 Lindroos, 2016, Review of light-induced degradation in crystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 147, 115, 10.1016/j.solmat.2015.11.047 Ganesh, 2011, Growth and characterization of multicrystalline silicon ingots by directional solidification for solar cell applications, Energy Procedia, 8, 371, 10.1016/j.egypro.2011.06.152 Ma, 2012, Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells, Sol. Energy Mater. Sol. Cells, 100, 231, 10.1016/j.solmat.2012.01.024 Miyamura, 2015, Advantage in solar cell efficiency of high-quality seed cast mono Si ingot, Appl. Phys. Exp., 8, 062301, 10.7567/APEX.8.062301 Qi, 2014, Optimization via simulation of a seeded directional solidification process for quasi-single crystalline silicon ingots by insulation partition design, J. Cryst. Growth, 398, 5, 10.1016/j.jcrysgro.2014.04.011 Hu, 2015, Higher quality mono-like cast silicon with induced grain boundaries, Sol. Energy Mater. Sol. Cells, 140, 121, 10.1016/j.solmat.2015.03.027 Yu, 2012, Local design of the hot-zone in an industrial seeded directional solidification furnace for quasi-single crystalline silicon ingots, J. Cryst. Growth, 358, 5, 10.1016/j.jcrysgro.2012.07.039 Zhong, 2015, Performance of solar cells fabricated from cast quasi-singlecrystalline silicon ingots, Sol. Energy, 111, 218, 10.1016/j.solener.2014.09.047 N. Stoddard, R. Sidhu, J. Creager, S. Dey, B. Kinsey, L. Maisano, C. Phillips, R. Clark, J. Zahler, Evaluating BP Solar’sMONO2™ material lifetime and cell electrical data, in: Proceedings of the IEEE Photovoltaic Specialists Conference 001163-001168, 2009. V. Prajapati, E. Cornagliotti, R. Russell, J.M. Fernadez, R.F. Clark, N. Stoddard, P. Choulat, J. John, High efficiency industrial silicon solar cells on silicon MONO2 ™ cast material using dielectric passivation and local BSF, in: Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg 1171–1174, 2009. Gu, 2012, Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: towards high efficiency and low cost silicon solar cells, Sol. Energy Mater. Sol. Cells, 101, 95, 10.1016/j.solmat.2012.02.024 Yu, 2012, Nanomaterials and nanostructures for efficient light absorption and photovoltaics, Nano Energy, 1, 57, 10.1016/j.nanoen.2011.10.002 Huang, 2011, Metal-assisted chemical etching of silicon: a review, Adv. Mater., 23, 285, 10.1002/adma.201001784 Yuan, 2009, Appl. Phys. Lett., 95, 123501, 10.1063/1.3231438 Her, 1998, Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett., 73, 1673, 10.1063/1.122241 Yoo, 2011, Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE), Sol. Energy Mater. Sol. Cells, 95, 2, 10.1016/j.solmat.2010.03.029 Toor, 2011, Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells, Appl. Phys. Lett., 99, 103501, 10.1063/1.3636105 Koynov, 2007, Black multi-crystalline silicon solar cells, Phys. Stat. Sol. (RRL), 1, R53, 10.1002/pssr.200600064 Koynov, 2006, Black nonreflecting silicon surfaces for solar cells, Appl. Phys. Lett., 88, 203107, 10.1063/1.2204573 Bastide, 2009, Phys. Status Solidi C., 6, 1536, 10.1002/pssc.200881016 Ye, 2014, 18.45%-efficient multi-crystalline silicon solar cell with nano-scale pseudo-pyramid texture, Adv. Funct. Mater., 24, 6708, 10.1002/adfm.201401589 Cao, 2015, Next-generation multi-crystalline silicon solar cells: diamond-wire sawing, nano-texture and high efficiency, Sol. Energy Mater. Sol. Cells, 141, 132, 10.1016/j.solmat.2015.05.030 Zhong, 2014, Influencing factors on the formation of the low minority carrier lifetime zone at the bottom of seed-assisted cast ingots, J. Cryst. Growth, 402, 65, 10.1016/j.jcrysgro.2014.05.015 Guerrero, 2014, About the origin of low wafer performance and crystal defect generation on seed-cast growth of industrial mono-like silicon ingots, Prog. Photovolt.: Res. Appl., 22, 923, 10.1002/pip.2344 Zhang, 2015, Distribution and propagation of dislocation defects in quasi-single crystalline silicon ingots cast by the directional solidification method, Sol. Energy Mater. Sol. Cells, 132, 1, 10.1016/j.solmat.2014.08.022 Kaden, 2012, Analysis of mono-cast silicon wafers and solar cells on industrial scale, Energy Procedia, 27, 103, 10.1016/j.egypro.2012.07.036 Jouini, 2012, Improved multicrystalline silicon ingot crystal quality through seed growth for high efficiency solar cells, Prog. Photovolt.: Res. Appl., 20, 735, 10.1002/pip.1221