Efficient nanostructured quasi-single crystalline silicon solar cells by metal-catalyzed chemical etching
Tài liệu tham khảo
Yu, 2016, Solar photovoltaic energy policy and globalization: a multiperspective approach with case studies of Germany, Japan, and China, Prog. Photovolt.: Res. Appl., 24, 458, 10.1002/pip.2560
Tao, 2016, Large area tunnel oxide passivated rear contact n-typeSi solar cells with 21.2% efficiency, Prog. Photovolt.: Res. Appl., 24, 830, 10.1002/pip.2739
T. Kinoshita, D. Fujishima, A. Yano, A. Ogane, S. Tohoda, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, H.M. Sakata, M. Taguchi, The approaches for high efficiency HIT™ solar cell with very thin (<100μm) silicon wafer over 23%, in: Proceeding of the 26th EU-PVSEC, Hamburg 871-874, 2011.
Green, 2015, The passivated emitter and rear cell (PERC): from conception to mass production, Sol. Energy Mater. Sol. Cells, 143, 190, 10.1016/j.solmat.2015.06.055
Lindroos, 2016, Review of light-induced degradation in crystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 147, 115, 10.1016/j.solmat.2015.11.047
Ganesh, 2011, Growth and characterization of multicrystalline silicon ingots by directional solidification for solar cell applications, Energy Procedia, 8, 371, 10.1016/j.egypro.2011.06.152
Ma, 2012, Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells, Sol. Energy Mater. Sol. Cells, 100, 231, 10.1016/j.solmat.2012.01.024
Miyamura, 2015, Advantage in solar cell efficiency of high-quality seed cast mono Si ingot, Appl. Phys. Exp., 8, 062301, 10.7567/APEX.8.062301
Qi, 2014, Optimization via simulation of a seeded directional solidification process for quasi-single crystalline silicon ingots by insulation partition design, J. Cryst. Growth, 398, 5, 10.1016/j.jcrysgro.2014.04.011
Hu, 2015, Higher quality mono-like cast silicon with induced grain boundaries, Sol. Energy Mater. Sol. Cells, 140, 121, 10.1016/j.solmat.2015.03.027
Yu, 2012, Local design of the hot-zone in an industrial seeded directional solidification furnace for quasi-single crystalline silicon ingots, J. Cryst. Growth, 358, 5, 10.1016/j.jcrysgro.2012.07.039
Zhong, 2015, Performance of solar cells fabricated from cast quasi-singlecrystalline silicon ingots, Sol. Energy, 111, 218, 10.1016/j.solener.2014.09.047
N. Stoddard, R. Sidhu, J. Creager, S. Dey, B. Kinsey, L. Maisano, C. Phillips, R. Clark, J. Zahler, Evaluating BP Solar’sMONO2™ material lifetime and cell electrical data, in: Proceedings of the IEEE Photovoltaic Specialists Conference 001163-001168, 2009.
V. Prajapati, E. Cornagliotti, R. Russell, J.M. Fernadez, R.F. Clark, N. Stoddard, P. Choulat, J. John, High efficiency industrial silicon solar cells on silicon MONO2 ™ cast material using dielectric passivation and local BSF, in: Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg 1171–1174, 2009.
Gu, 2012, Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: towards high efficiency and low cost silicon solar cells, Sol. Energy Mater. Sol. Cells, 101, 95, 10.1016/j.solmat.2012.02.024
Yu, 2012, Nanomaterials and nanostructures for efficient light absorption and photovoltaics, Nano Energy, 1, 57, 10.1016/j.nanoen.2011.10.002
Huang, 2011, Metal-assisted chemical etching of silicon: a review, Adv. Mater., 23, 285, 10.1002/adma.201001784
Yuan, 2009, Appl. Phys. Lett., 95, 123501, 10.1063/1.3231438
Her, 1998, Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett., 73, 1673, 10.1063/1.122241
Yoo, 2011, Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE), Sol. Energy Mater. Sol. Cells, 95, 2, 10.1016/j.solmat.2010.03.029
Toor, 2011, Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells, Appl. Phys. Lett., 99, 103501, 10.1063/1.3636105
Koynov, 2007, Black multi-crystalline silicon solar cells, Phys. Stat. Sol. (RRL), 1, R53, 10.1002/pssr.200600064
Koynov, 2006, Black nonreflecting silicon surfaces for solar cells, Appl. Phys. Lett., 88, 203107, 10.1063/1.2204573
Bastide, 2009, Phys. Status Solidi C., 6, 1536, 10.1002/pssc.200881016
Ye, 2014, 18.45%-efficient multi-crystalline silicon solar cell with nano-scale pseudo-pyramid texture, Adv. Funct. Mater., 24, 6708, 10.1002/adfm.201401589
Cao, 2015, Next-generation multi-crystalline silicon solar cells: diamond-wire sawing, nano-texture and high efficiency, Sol. Energy Mater. Sol. Cells, 141, 132, 10.1016/j.solmat.2015.05.030
Zhong, 2014, Influencing factors on the formation of the low minority carrier lifetime zone at the bottom of seed-assisted cast ingots, J. Cryst. Growth, 402, 65, 10.1016/j.jcrysgro.2014.05.015
Guerrero, 2014, About the origin of low wafer performance and crystal defect generation on seed-cast growth of industrial mono-like silicon ingots, Prog. Photovolt.: Res. Appl., 22, 923, 10.1002/pip.2344
Zhang, 2015, Distribution and propagation of dislocation defects in quasi-single crystalline silicon ingots cast by the directional solidification method, Sol. Energy Mater. Sol. Cells, 132, 1, 10.1016/j.solmat.2014.08.022
Kaden, 2012, Analysis of mono-cast silicon wafers and solar cells on industrial scale, Energy Procedia, 27, 103, 10.1016/j.egypro.2012.07.036
Jouini, 2012, Improved multicrystalline silicon ingot crystal quality through seed growth for high efficiency solar cells, Prog. Photovolt.: Res. Appl., 20, 735, 10.1002/pip.1221