Medicinal plants species used by herbalists in the treatment of snakebite envenomation in Uganda
Tóm tắt
There are high mortality and morbidity rates due to poisonous snakebites globally with sub-Saharan Africa having some of the highest cases. However, traditional medicine practitioners (TMP) have been treating snakebites in Uganda for long despite the fact that few studies have been conducted to document such vital and rich indigenous traditional knowledge before it is lost. This study aimed to document the medicinal plant species used by experienced TMP in treating snakebite envenomation in selected post-conflict parts of Uganda. An ethnopharmacological survey was conducted in Kitgum, Serere, Kaberamaido and Kaabong districts in Uganda. Twenty-seven TMP with expertise in treating snakebites were purposively identified using the snowball technique and interviewed using semi-structured questionnaires. Data were analysed using simple descriptive statistics. Sixty plant species from 28 families were documented with high consensus among the isolated indigenous Ik tribe of Kaabong district. Most of the plant species used were from the Asteraceae and Fabaceae families with eight species each. The genus Echinops was the most well-represented with three species. The most commonly used plant species were of citation were Steganotaenia araliaceae (16), Microglossa pyrifolia (Lam.), Gladiolus dalenii Van Geel (13), Aframomum mildbraedii Loes. (11), Jasminum schimperi Vatke and Cyathula uncinulata (Schrad) Schinz (10) and Crinum macowanii Baker and Cyphostemma cyphopetalum (Fresen.) Desc. ex Wild & R.B. Drumm (10). S. araliaceae which was mentioned by all the TMP in the Ik community was used for first aid. Most of the plant species were harvested from the wild (68.75%) and were herbs (65.0%) followed by trees (23.3%). The most commonly used plant parts were roots (42.6%) and leaves (25.0%). Thirteen different methods of preparation and administration were used. Most of the medicines were administered orally (61.2%) and topically (37.6%). The commonest methods of oral application were cold water infusions (32.5%) and decoctions (21.7%). TMP widely use several medicinal plant species for treating snakebite envenomation in the selected post-conflict regions of Uganda
Tài liệu tham khảo
Gutiérrez JM, Warrell DA, Williams DJ, Jensen S, Brown N, Calvete JJ, Harrison RA, Initiative GS (2013) The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: the way forward. PLoS Negl Trop Dis 7: e2162–e2162.
WHO. WHO guidelines for the production, control and regulation of snake antivenom immunoglobulins. Geneva: Switzerland; 2010.
Chippaux J-P. Snakebite envenomation turns again into a neglected tropical disease! J Venom Anim Toxins Incl Trop Dis. 2017;23:38.
Warrell DA. WHO, Guidelines for the prevention and clinical management of snakebite in Afrika. Africa, Brazzav: Reg. Off; 2010.
Warrell DA. Snakebite. Lancet. 2010;375:77–88.
Gold BS, Wingert WA. Snake venom poisoning in the United States: a review of therapeutic practice. South Med J. 1994;87:579–89.
Oliveira CZ, Maiorano VA, Marcussi S, Sant’Ana CD, Januário AH, Lourenço MV, Sampaio SV, França SC, Pereira PS, Soares AM. Anticoagulant and antifibrinogenolytic properties of the aqueous extract from Bauhinia forficata against snake venoms. J Ethnopharmacol. 2005;98:213–6.
Shah K, Sherstha J, Thapa C. Snakebite management guideline. Kathmandu: Epidemiology and Disease Control Division, Department of Health Services, Zoonoses Control Sub-section, Government of Nepal; 2003.
Rajendran K, Shirwaikar A, Mehta M, Bharathi RV. In vitro and in vivo anti-snake venom (Daboia russelli) studies on various leaf extracts of Acalypha indica Linn. Int. J. Phytomedicine. 2010;2.
Ntume R, Anywar UG. Ethnopharmacological survey of medicinal plants used in the treatment of snakebites in Central Uganda. Curr Life Sci. 2015;1:6–14.
Tabuti JR, Dhillion SS, Lye KA. Traditional medicine in Bulamogi county, Uganda: its practitioners, users and viability. J Ethnopharmacol. 2003;85:119–29.
Das K. Medicinal plants for snake bite treatment-future focus. Ethnobot Leafl. 2009;2009:11.
Newman WJ, Moran NF, Theakston RDG, Warrell DA, Wilkinson D. Traditional treatments for snakebite in a rural African community. Ann Trop Med Parasitol. 1997;91:967–9.
Owuor BO, Mulemi BA, Kokwaro JO. Indigenous snake bite remedies of the Luo of western Kenya. J Ethnobiol. 2005;25:129–41.
Owuor BO, Kisangau DP. Kenyan medicinal plants used as antivenin: a comparison of plant usage. J Ethnobiol Ethnomedicine. 2006; https://doi.org/10.1186/1746-4269-2-7.
Namukobe J, Kasenene JM, Kiremire BT, Byamukama R, Kamatenesi-Mugisha M, Krief S, Dumontet V, Kabasa JD. Traditional plants used for medicinal purposes by local communities around the Northern sector of Kibale National Park, Uganda. J Ethnopharmacol. 2011;136:236–45.
World Population Review (2020) No Title. https://worldpopulationreview.com/countries/uganda-population/.
Anderson J, Learch C, Gardner S. National survey and segmentation of smallholder households in Uganda. Solut: Underst. Their Demand Financ. Agric. Digit; 2016.
Van Acker F. Uganda and the Lord’s Resistance Army: the new order no one ordered. Afr Aff (Lond). 2004;103:335–57.
Ministry of Health Uganda, WHO (2005) Health and mortality survey among internally displaced persons in Gulu, Kitgum and Pader districts, Northern Uganda. Kampala, Uganda.
Alagesaboopathi C. Ethnomedicinal plants used for the treatment of snake bites by Malayali tribal’s and rural people in Salem district, Tamilnadu, India. Int J Biosci. 2013;3:42–53.
Vásquez J, Alarcón JC, Jiménez SL, Jaramillo GI, Gómez-Betancur IC, Rey-Suárez JP, Jaramillo KM, Muñoz DC, Marín DM, Romero JO. Main plants used in traditional medicine for the treatment of snake bites n the regions of the department of Antioquia, Colombia. J Ethnopharmacol. 2015;170:158–66.
Emmanuel A, Ebinbin A, Amlabu W. Detoxification of Echis ocellatus venom-induced toxicity by Annona senegalensis Pers. J Complement Integr Med. 2014;11:93–7.
Adzu B, Abubakar MS, Izebe KS, Akumka DD, Gamaniel KS. Effect of Annona senegalensis rootbark extracts on Naja nigricotlis nigricotlis venom in rats. J Ethnopharmacol. 2005;96:507–13.
Okello J, Ssegawa P. Plants used by communities of Ngai sub-county, Apac District, Northern Uganda. Afr J Ecol. 2007;45:76–83.
Kamatenesi MM, Acipa A, Oryem-Origa H. Medicinal plants of Otwal and Ngai Sub Counties in Oyam District, Northern Uganda. J Ethnobiol Ethnomed. 2011;7:7.
Agoro JW (1978) Crystalline caffeic acid derivatives and compositions and method for treating snakebite.
Hamill FA, Apio S, Mubiru NK, Mosango M, Bukenya-Ziraba R, Maganyi OW, Soejarto DD. Traditional herbal drugs of southern Uganda: Part III: Isolation and methods for physical characterization of bioactive alkanols from Rubus apetalus. J Ethnopharmacol. 2003;87:15–9.
Samy RP, Thwin MM, Gopalakrishnakone P, Ignacimuthu S. Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu, India. J Ethnopharmacol. 2008;115:302–12.
Tugume P, Kakudidi EK, Buyinza M, Namaalwa J, Kamatenesi M, Mucunguzi P, Kalema J. Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. J Ethnobiol Ethnomed. 2016;12:1–28.
Ushanandini S, Nagaraju S, Harish Kumar K, Vedavathi M, Machiah DK, Kemparaju K, Vishwanath BS, Gowda TV, Girish KS. The anti-snake venom properties of Tamarindus indica (leguminosae) seed extract. Phytother Res. 2006;20:851–8.
Anywar G, Oryem-Origa H, Kamatenesi Mugisha M. Wild plants used as nutraceuticals from Nebbi district, Uganda. European J Med Plants. 2014;4:641–60.
Ngoupaye GT, Bum EN, Ngah E, Talla E, Moto FCO, Taiwe GS, Rakotonirina A, Rakotonirina SV. The anticonvulsant and sedative effects of Gladiolus dalenii extracts in mice. Epilepsy Behav. 2013;28:450–6.
d’Avigdor E, Wohlmuth H, Asfaw Z, Awas T. The current status of knowledge of herbal medicine and medicinal plants in Fiche, Ethiopia. J Ethnobiol Ethnomed. 2014;10:38.
Oryema C, Bukenya-Ziraba R, Omagor N, Opio A. Medicinal plants of Erute county, Lira district, Uganda with particular reference to their conservation. Afr J Ecol. 2010;48:285–98.
Court WE. The doctrine of signatures or similitudes. Trends Pharmacol Sci. 1985;6:225–7.
Bennett BC. Doctrine of signatures: an explanation of medicinal plant discovery or Dissemination of knowledge? Econ Bot. 2007;61:246–55.
Richardson-Boedler C. The doctrine of signatures: a historical, philosophical, scientific view (II). Br Homeopath J. 2000;89:26–8.
Kamatenesi Mugisha M, Asiimwe S, Namutebi A, Borg-Karlson A-K, Kakudidi EK. Ethnobotanical study of indigenous knowledge on medicinal and nutritious plants used to manage opportunistic infections associated with HIV/AIDS in western Uganda. J Ethnopharmacol. 2014;155:194–202.
Huffman MA. Chimpanzee self-medication: a historical perspective of the key findings. In: Hosaka K, Zamma K, Nakamura M, Itoh N, editors. Mahale Chimpanzees 50 Years Res. Cambridge: Cambridge University Press; 2015. p. 340–53.
Huffman MA. Current evidence for self-medication in primates: A multidisciplinary perspective. Am J Phys Anthropol. 1997;104:171–200.
Shurkin J. News feature: animals that self-medicate. Proc Natl Acad Sci. 2014;111:17339–41.
Thomas AS. The vegetation of the Karamoja district, Uganda: an illustration of biological factors in tropical ecology. J Ecol. 1943:149–77.
Wangoda R, Watmon B, Kisige M. Snakebite management: experiences from Gulu Regional Hospital Uganda. East Cent. Afr J. Surg. 2004;9(1):82–6.
Nabatanzi V. Kamuli, Mbende, Gulu top in number of snakebites. New Vis. Uganda’s Lead. Dly: New Vision; 2018.
Browne K. Snowball sampling: using social networks to research non-heterosexual women. Int J Soc Res Methodol. 2005;8:47–60.
Martin GJ (1995) Ethnobotany: a methods manual. https://doi.org/10.1007/978-1-4615-2496-0.
The plant list (2020) The plant list. http://theplantlist.org.
Angiosperm phylogeny group IV (2020) Angiosperm phylogeny group IV. http://www.mobot.org/MOBOT/research/APweb/.