Customized synthesis of functional bismuth phosphate using different methods: photocatalytic and photoluminescence properties enhancement
Tóm tắt
In this work, bismuth phosphate photocatalysts have been obtained via co-precipitation and solid-state methods. The synthesized samples were calcinated at uniform temperature and were analyzed by scanning electron microscopy, X-ray diffraction, energy dispersive X-ray analysis and Raman spectroscopy. The photocatalytic activity of the synthesized samples was evaluated by the degradation of anionic and cationic organic dyes [Rhodamine B and Orange G] in aqueous medium under UV light irradiation (λ > 254 nm). The results showed that the synthesis technique considerably affects the morphology, structure, photoluminescent and photocatalytic process properties. Indeed, samples obtained through solid-state reaction approach exhibited higher catalytic activity in comparison with those prepared via co-precipitation method. Photoluminescence experiments revealed unexpected emissions in the green-orange range, with the presence of two bands characteristic of the two monoclinic phases of BiPO4.
Tài liệu tham khảo
Li J, Cui W, Chen P et al (2020) Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization. Appl Catal B Environ 260:118130. https://doi.org/10.1016/j.apcatb.2019.118130
Liu Y, Zhu Y, Xu J et al (2013) Degradation and mineralization mechanism of phenol by BiPO4 photocatalysis assisted with H2O2. Appl Catal B Environ 142–143:561–567. https://doi.org/10.1016/j.apcatb.2013.05.049
Im J-K, Son H-S, Kang Y-M, Zoh K-D (2012) Carbamazepine degradation by photolysis and titanium dioxide photocatalysis. Water Environ Res 84:554–561. https://doi.org/10.2175/106143012x13373550427273
Ahmed S, Rasul MG, Martens WN et al (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18. https://doi.org/10.1016/j.desal.2010.04.062
Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004
Palmisano G, García-López E, Marcì G et al (2010) Advances in selective conversions by heterogeneous photocatalysis. Chem Commun 46:7074–7089. https://doi.org/10.1039/c0cc02087g
Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chemie - Int Ed 52:2–39. https://doi.org/10.1002/anie.201207199
Abdelhamid HN (2020) High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104404
Etman AS, Abdelhamid HN, Yuan Y et al (2018) Facile water-based strategy for synthesizing MoO3-x nanosheets: efficient visible light photocatalysts for dye degradation. ACS Omega 3:2201–2209. https://doi.org/10.1021/acsomega.8b00012
Huignard A, Gacoin T, Boilot J (2000) Synthesis and luminescence properties of colloidal YVO4: Eu phosphors arnaud. Chem Mater 12:1090–1094. https://doi.org/10.1021/cm990722t
Riwotzki K, Haase M (2001) Colloidal YVO4: Eu and YP0.95V0.05O4: Eu nanoparticles : luminescence and energy transfer processes. J Phys Chem B 105:12709–12713
Obregón S, Colón G (2014) Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism. Appl Catal B Environ 158–159:242–249. https://doi.org/10.1016/j.apcatb.2014.04.029
Jan T, Azmat S, Wahid B et al (2018) Chemically synthesized ZnO-Bi2O3(BZO) nanocomposites with tunable optical, photoluminescence and antibacterial characteristics. Mater Sci Semicond Process 84:71–75. https://doi.org/10.1016/j.mssp.2018.05.007
Bao N, Liu Y, Li ZW et al (2016) Construction of order mesoporous (Eu-La)/ZnO composite material and its luminescent characters. J Lumin 177:409–415. https://doi.org/10.1016/j.jlumin.2016.05.025
Ajmal M, Ali T, Ahmad Mian S et al (2017) Effects of Ce3+-doping concentration on the luminescent properties of La2O3:Ce3+phosphors. Mater Today Proc 4:4924–4929. https://doi.org/10.1016/j.matpr.2017.04.097
Ait Ahsaine H, Slassi A, Naciri Y et al (2018) Photo/electrocatalytic properties of nanocrystalline ZnO and La-doped ZnO: combined DFT fundamental semiconducting properties and experimental study. ChemistrySelect 3:7778–7791. https://doi.org/10.1002/slct.201801729
Ansari AA, Aldalbahi A, Labis JP et al (2018) Highly biocompatible, monodispersed and mesoporous La(OH)3:Eu@mSiO2core-shell nanospheres: Synthesis and luminescent properties. Colloids Surf B Biointerfaces 163:133–139. https://doi.org/10.1016/j.colsurfb.2017.12.026
García-Murillo A, de Carrillo-Romo JF, Oliva-Uc J et al (2017) Effects of Eu content on the luminescent properties of Y2O3:Eu3+ aerogels and Y(OH)3 Y2O3:Eu3+@SiO2 glassy aerogels. Ceram Int J 43:12196–12204. https://doi.org/10.1016/j.ceramint.2017.06.079
Taoufyq A, Mauroy V, Guinneton F et al (2015) Role of the chemical substitution on the luminescence properties of solid solutions Ca(1–x)Cd(x)WO4 (0 ≤ x ≤ 1). Mater Res Bull 70:40–46. https://doi.org/10.1016/j.materresbull.2015.04.006
Ait Ahsaine H, Ezahri M, Benlhachemi A et al (2015) Structural, vibrational study and UV photoluminescence properties of the system Bi(2–x)Lu(x)WO6 (0.1 ≤ x ≤ 1). RSC Adv 5:96242–96252. https://doi.org/10.1039/c5ra19424e
Bakiz B, Hallaoui A, Taoufyq A et al (2018) Luminescent properties under X-ray excitation of Ba(1–x)PbxWO4 disordered solid solution. J Solid State Chem 258:146–155. https://doi.org/10.1016/j.jssc.2017.10.014
Hallaoui A, Taoufyq A, Arab M et al (2016) Structural, vibrational and photoluminescence properties of Sr(1–x)PbxMoO4 solid solution synthesized by solid state reaction. Mater Res Bull 79:121–132. https://doi.org/10.1016/j.materresbull.2016.03.015
Emam HE, Abdelhamid HN, Abdelhameed RM (2018) Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF). Dye Pigment 159:491–498. https://doi.org/10.1016/j.dyepig.2018.07.026
Kassem AA, Abdelhamid HN, Fouad DM, Ibrahim SA (2020) Hydrogenation reduction of dyes using metal-organic framework-derived CuO@C. Microporous Mesoporous Mater 305:110340. https://doi.org/10.1016/j.micromeso.2020.110340
Abdelhamid HN, Huang Z, El-Zohry AM et al (2017) A fast and scalable approach for synthesis of hierarchical porous zeolitic imidazolate frameworks and one-pot encapsulation of target molecules. Inorg Chem 56:9139–9146. https://doi.org/10.1021/acs.inorgchem.7b01191
Zhang W, Ni Y, Huang W et al (2010) Hydrothermal synthesis, structure study and luminescent properties of YbPO4:Tb3+ nanoparticles. J Rare Earths 28:299–302. https://doi.org/10.1016/S1002-0721(10)60337-7
Bühler G, Feldmann C (2006) Microwave-assisted synthesis of luminescent LaPO4:Ce, Tb nanocrystals in ionic liquids. Angew Chemie - Int Ed 45:4864–4867. https://doi.org/10.1002/anie.200600244
Naciri Y, Chennah A, Jaramillo-Páez C et al (2019) Preparation, characterization and photocatalytic degradation of Rhodamine B dye over a novel Zn3(PO4)2/BiPO4 catalyst. J Environ Chem Eng 7:103075. https://doi.org/10.1016/j.jece.2019.103075
Bouddouch A, Amaterz E, Taoufyq A et al (2020) Photocatalytic and photoluminescent properties of a system based on SmPO4 nanostructure phase. Mater Today Proc 27:3139–3144. https://doi.org/10.1016/j.matpr.2020.03.803
Amaterz E, Tara A, Bouddouch A et al (2020) Hierarchical flower-like SrHPO4 electrodes for the photoelectrochemical degradation of Rhodamine B. J Appl Electrochem 50:569–581. https://doi.org/10.1007/s10800-020-01416-1
Kalinkin MO, Yanchenko MY, Buldakova LY et al (2020) Photocatalytic activity of LiMgPO4 in the hydroquinone decomposition and related surface phenomena. React Kinet Mech Catal 129:1061–1076. https://doi.org/10.1007/s11144-020-01754-3
Amaterz E, Bouddouch A, Tara A et al (2020) Correlation between photoluminescence and photoelectrochemical properties of SrHPO4/ BaHPO4/FTO anode material. Opt Mater (Amst) 109:110268. https://doi.org/10.1016/j.optmat.2020.110268
Binas VD, Sambani K, Maggos T et al (2012) Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light. Appl Catal B Environ 113–114:79–86. https://doi.org/10.1016/j.apcatb.2011.11.021
Bouddouch A, Amaterz E, Haounati R et al (2010) Synthesis, characterization and luminescence properties of manganese phosphate Mn3(PO4)2. Mater Today Proc 3:2–7. https://doi.org/10.1016/j.matpr.2019.08.058
Naciri Y, Hsini A, Ajmal Z et al (2020) Influence of Sr-doping on structural, optical and photocatalytic properties of synthesized Ca3(PO4)2. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2020.03.105
Ge M (2014) Photodegradation of rhodamine B and methyl orange by Ag3PO4 catalyst under visible light irradiation. Chinese J Catal 35:1410–1417. https://doi.org/10.1016/S1872-2067(14)60079-6
Lin H, Ye H, Xu B et al (2013) Ag3PO4 quantum dot sensitized BiPO4: a novel p-n junction Ag3PO4/BiPO4 with enhanced visible-light photocatalytic activity. Catal Commun 37:55–59. https://doi.org/10.1016/j.catcom.2013.03.026
Guo J, Ouyang S, Zhou H et al (2013) Ag3PO4/In(OH)3 composite photocatalysts with adjustable surface-electric property for efficient photodegradation of organic syes under simulated solar-light irradiation. J Phys Chem C 117:17716–17724. https://doi.org/10.1021/jp4062972
Zhang L, Zhang H, Huang H et al (2012) Ag3PO4/SnO2 semiconductor nanocomposites with enhanced photocatalytic activity and stability. New J Chem 36:1541–1544. https://doi.org/10.1039/c2nj40206h
Cao J, Luo B, Lin H et al (2012) Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag3PO4 hybrids for degradation of methyl orange. J Hazard Mater 217–218:107–115. https://doi.org/10.1016/j.jhazmat.2012.03.002
Gu YQ, Wang B, Gu XQ et al (2014) Preparation and characterization of Co3(PO4)2/Ag3PO4 nanocomposites for visible-light photocatalysis. Wuli Huaxue Xuebao/ Acta Phys - Chim Sin 30:1909–1915. https://doi.org/10.3866/PKU.WHXB201408046
Song L, Chen Z, Li T, Zhang S (2017) A novel Ni2+-doped Ag3PO4 photocatalyst with high photocatalytic activity and enhancement mechanism. Mater Chem Phys 186:271–279. https://doi.org/10.1016/j.matchemphys.2016.10.053
Meng X, Hao M, Shi J et al (2017) Novel visible light response Ag3PO4/TiP2O7 composite photocatalyst with low Ag consumption. Adv Powder Technol 28:1047–1053. https://doi.org/10.1016/j.apt.2017.01.010
Lu J, Wang Y, Liu F et al (2017) Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite photocatalyst with enhanced visible-light photocatalytic performances. Appl Surf Sci 393:180–190. https://doi.org/10.1016/j.apsusc.2016.10.003
Chi C, Pan J, You M et al (2018) The porous TiO2 nanotubes/Ag3PO4 heterojunction for enhancing sunlight photocatalytic activity. J Phys Chem Solids 114:173–178. https://doi.org/10.1016/j.jpcs.2017.11.028
Chang T-S, Li G, Shin C-H et al (2000) Catalytic behavior of BiPO4 in the multicomponent bismuth phosphate system on the propylene ammoxidation. Catal Lett 68:229–234. https://doi.org/10.4028/www.scientific.net/MSF.544-545.23
Zhu Y, Wang Y, Ling Q, Zhu Y (2017) Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Appl Catal B Environ 200:222–229. https://doi.org/10.1016/j.apcatb.2016.07.002
Pan C, Zhu Y (2015) A review of BiPO4, a highly efficient oxyacid-type photocatalyst, used for environmental applications. Catal Sci Technol 5:3071–3083. https://doi.org/10.1039/c5cy00202h
Pan C, Li D, Ma X et al (2011) Effects of distortion of PO4 tetrahedron on the photocatalytic performances of BiPO4. Catal Sci Technol 1:1399–1405. https://doi.org/10.1039/c1cy00261a
Cheng L-W, Tsai J-C, Huang T-Y et al (2014) Controlled synthesis, characterization and photocatalytic activity of BiPO4 nanostructures with different morphologies. Mater Res Express 1:025023. https://doi.org/10.1088/2053-1591/1/2/025023
Huang H, Chen G, Zhang Y (2014) Two Bi-based phosphate photocatalysts: Crystal structure, optical property and photocatalytic activity. Inorg Chem Commun 44:46–49. https://doi.org/10.1016/j.inoche.2014.02.047
Saravanan R, Gupta VK, Narayanan V, Stephen A (2013) Comparative study on photocatalytic activity of ZnO prepared by different methods. J Mol Liq 181:133–141. https://doi.org/10.1016/j.molliq.2013.02.023
Wang N, Lei L, Zhang XM et al (2011) A comparative study of preparation methods of nanoporous TiO2 films for microfluidic photocatalysis. Microelectron Eng 88:2797–2799. https://doi.org/10.1016/j.mee.2010.12.051
Li X, Zhu Z, Zhao Q, Wang L (2011) Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: a comparative study. J Hazard Mater 186:2089–2096. https://doi.org/10.1016/j.jhazmat.2010.12.111
Evans P, Mantke S, Mills A et al (2007) A comparative study of three techniques for determining photocatalytic activity. J Photochem Photobiol A Chem 188:387–391. https://doi.org/10.1016/j.jphotochem.2006.12.040
Hidaka H, Ajisaka K, Horikoshi S et al (2001) Comparative assessment of the efficiency of TiO2/OTE thin film electrodes fabricated by three deposition methods: photoelectrochemical degradation of the DBS anionic surfactant. J Photochem Photobiol A Chem 138:185–192. https://doi.org/10.1016/S1010-6030(00)00389-0
Soto-Arreola A, Huerta-Flores AM, Mora-Hernández JM, Torres-Martínez LM (2018) Comparative study of the photocatalytic activity for hydrogen evolution of MFe2O4 (M = Cu, Ni) prepared by three different methods. J Photochem Photobiol A Chem 357:20–29. https://doi.org/10.1016/j.jphotochem.2018.02.016
Zhu Y, Ling Q, Liu Y et al (2016) Photocatalytic performance of BiPO4 nanorods adjusted via defects. Appl Catal B Environ 187:204–211. https://doi.org/10.1016/j.apcatb.2016.01.012
Pan C, Li D, Ma X et al (2011) Effects of distortion of PO4tetrahedron on the photocatalytic performances of BiPO4. Catal Sci Technol. https://doi.org/10.1039/c1cy00261a
Pan C, Zhu Y (2015) A review of BiPO<inf>4</inf>, a highly efficient oxyacid-type photocatalyst, used for environmental applications. Catal Sci Technol. https://doi.org/10.1039/c5cy00202h
Zhiu Y, Liu Y, Lv Y et al (2014) Enhancement of photocatalytic activity for BiPO4via phase junction. J Mater Chem A. https://doi.org/10.1039/c4ta01807a
Zhang Y, Selvaraj R, Sillanpää M et al (2014) The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4. Chem Eng J 245:117–123. https://doi.org/10.1016/j.cej.2014.02.028
Bouddouch A, Amaterz E, Bakiz B et al (2020) Role of thermal decomposition process in the photocatalytic or photoluminescence properties of BiPO4 polymorphs. Water Environ Res 92:1874–1887. https://doi.org/10.1002/wer.1340
Yun-jian W, Li-ping LI, Jing Z et al (2013) Synthesis, photoluminescence and photocatalytic performance of BiPO4 with different phase structures. Chem Res Chinese Univ 29:556–562. https://doi.org/10.1007/s40242-013-2277-6