Blue TiO2 Nanotube Array as an Oxidant Generating Novel Anode Material Fabricated by Simple Cathodic Polarization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pletcher, 1990
Rajeshwar, 1997
Comninellis, 2010
Srinivasan, 2006, Report on the electrolytic industries for the year 2004, J. Electrochem. Soc., 153, K1, 10.1149/1.2172468
Over, 2013, Atomic scale insights into electrochemical versus gas phase oxidation of HCl over RuO2-based catalysts: A comparative review, Electrochim. Acta, 93, 314, 10.1016/j.electacta.2012.12.099
E. Commission, Best Available Techniques (BAT) Reference Document for the Production of the Chlor-alkali Manufacturing Industry. Integrated Pollution Prevention and Control (IPPC) 2013.
Kraft, 2007, Doped diamond: a compact review on a new, versatile electrode material, Int. J. Electrochem. Sci., 2, 355, 10.1016/S1452-3981(23)17080-5
Martínez-Huitle, 2008, Electrochemical alternatives for drinking water disinfection, Angew. Chem. Int. Ed., 47, 1998, 10.1002/anie.200703621
Trasatti, 1994
Fujishima, 2005
Trasatti, 2000, Electrocatalysis: understanding the success of DSA®, Electrochim. Acta, 45, 2377, 10.1016/S0013-4686(00)00338-8
Iniesta, 2001, Electrochemical oxidation of phenol at boron-doped diamond electrode, Electrochim. Acta, 46, 3573, 10.1016/S0013-4686(01)00630-2
Roy, 2011, TiO2 nanotubes: synthesis and applications, Angew. Chem. Int. Ed., 50, 2904, 10.1002/anie.201001374
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
O’Regan, 1991, A low-cost, high-efficiency solar cell based on dye-sensitized, Nature, 353, 24
Kang, 2011, Fabrication of PbS nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties, ACS Appl. Mater. Interfaces, 3, 746, 10.1021/am101086t
Tan, 2010, Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications, ACS Appl. Mater. Interfaces, 2, 498, 10.1021/am900726k
Grimes, 2009
Macak, 2007, Filling of TiO2 Nanotubes by Self-Doping and Electrodeposition, Adv. Mater., 19, 3027, 10.1002/adma.200602549
Macak, 2007, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater. Sci., 11, 3, 10.1016/j.cossms.2007.08.004
Kesselman, 1997, E Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways, J. Phys. Chem. B, 101, 2637, 10.1021/jp962669r
Chen, 2011, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331, 746, 10.1126/science.1200448
Fabregat-Santiago, 2008, High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping, J. Am. Chem. Soc., 130, 11312, 10.1021/ja710899q
Kattouf, 2009, Enhanced reversible electrochromism via in situ phase transformation in tungstate monohydrate, Chem. Commun., 7396, 10.1039/b913461a
Kim, 2011, Enhanced Photovoltaic Properties of a Cobalt Bipyridyl Redox Electrolyte in Dye-Sensitized Solar Cells Employing Vertically Aligned TiO2 Nanotube Electrodes, J. Phys. Chem.C, 115, 19979, 10.1021/jp2025736
Yamase, 1998, Photo-and electrochromism of polyoxometalates and related materials, Chem. Rev., 98, 307, 10.1021/cr9604043
Granqvist, 1995
Deb, 2008, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications, Sol. Energy Mater. Sol. Cells, 92, 245, 10.1016/j.solmat.2007.01.026
Rosseinsky, 2001, Electrochromic systems and the prospects for devices, Adv. Mater., 13, 783, 10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
Gillaspie, 2010, Metal-oxide films for electrochromic applications: present technology and future directions, J. Mater. Chem., 20, 9585, 10.1039/c0jm00604a
Bard, 1980
Yun, 2009, Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid, J. Phys. Chem.C, 113, 3050, 10.1021/jp808604t
Lu, 2012, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano lett., 12, 1690, 10.1021/nl300173j
Kim, 2013, Facile detection of photogenerated reactive oxygen species in TiO2 nanoparticles suspension using colorimetric probe-assisted spectrometric method, Chemosphere, 93, 2011, 10.1016/j.chemosphere.2013.07.023
Simonsen, 2010, Photocatalytic bleaching of p-nitrosodimethylaniline and a comparison to the performance of other AOP technologies, J. Photochem. Photobiol., A, 216, 244, 10.1016/j.jphotochem.2010.07.008
Cho, 2004, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Res., 38, 1069, 10.1016/j.watres.2003.10.029
Jeong, 2009, The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes, Water Res., 43, 895, 10.1016/j.watres.2008.11.033
Tokudome, 2005, Electrochromism of Titanate-Based Nanotubes, Angew. Chem. Int. Ed., 44, 1974, 10.1002/anie.200462448
Sakai, 2001, Highly hydrophilic surfaces of cathodically polarized amorphous TiO2 electrodes, J. Electrochem. Soc., 148, E395, 10.1149/1.1399279
Ghicov, 2006, TiO2 nanotubes: H+ insertion and strong electrochromic effects, Electrochem. Commun., 8, 528, 10.1016/j.elecom.2006.01.015
Kuvarega, 2012, Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water, J. Nanopart. Res., 14, 1, 10.1007/s11051-012-0776-x
Mor, 2005, Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films, Adv. Funct. Mater., 15, 1291, 10.1002/adfm.200500096
Chastain, 1992
Lai, 2006, Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity, J. Electrochem. Soc., 153, D123, 10.1149/1.2203112
Wu, 2014, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach, Electrochim. Acta, 116, 129, 10.1016/j.electacta.2013.10.092
Kralji, 1965, p-Nitrosodimethylaniline as an OH Radical Scavenger in Radiation Chemistry1, J. Am. Chem. Soc., 87, 2547, 10.1021/ja01090a004
Panizza, 2005, Application of diamond electrodes to electrochemical processes, Electrochim. Acta, 51, 191, 10.1016/j.electacta.2005.04.023