Blue TiO2 Nanotube Array as an Oxidant Generating Novel Anode Material Fabricated by Simple Cathodic Polarization

Electrochimica Acta - Tập 141 - Trang 113-119 - 2014
Choonsoo Kim1, Seonghwan Kim1, Jusol Choi1, Jaehan Lee1, Jin Soo Kang2,1, Yung‐Eun Sung2,1, Jeong Yong Lee1, Wonyong Choi3, Jeyong Yoon1
1School of Chemical and Biological Engineering, College of Engineering, Institute of Chemical Process, Seoul National University (SNU), Gwanak-gu, Daehak-dong, Seoul 151-742, Republic of Korea
2Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea
3School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pletcher, 1990

Rajeshwar, 1997

Comninellis, 2010

Srinivasan, 2006, Report on the electrolytic industries for the year 2004, J. Electrochem. Soc., 153, K1, 10.1149/1.2172468

Over, 2013, Atomic scale insights into electrochemical versus gas phase oxidation of HCl over RuO2-based catalysts: A comparative review, Electrochim. Acta, 93, 314, 10.1016/j.electacta.2012.12.099

E. Commission, Best Available Techniques (BAT) Reference Document for the Production of the Chlor-alkali Manufacturing Industry. Integrated Pollution Prevention and Control (IPPC) 2013.

Kraft, 2007, Doped diamond: a compact review on a new, versatile electrode material, Int. J. Electrochem. Sci., 2, 355, 10.1016/S1452-3981(23)17080-5

Martínez-Huitle, 2008, Electrochemical alternatives for drinking water disinfection, Angew. Chem. Int. Ed., 47, 1998, 10.1002/anie.200703621

Trasatti, 1994

Fujishima, 2005

Trasatti, 2000, Electrocatalysis: understanding the success of DSA®, Electrochim. Acta, 45, 2377, 10.1016/S0013-4686(00)00338-8

Iniesta, 2001, Electrochemical oxidation of phenol at boron-doped diamond electrode, Electrochim. Acta, 46, 3573, 10.1016/S0013-4686(01)00630-2

Roy, 2011, TiO2 nanotubes: synthesis and applications, Angew. Chem. Int. Ed., 50, 2904, 10.1002/anie.201001374

Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0

O’Regan, 1991, A low-cost, high-efficiency solar cell based on dye-sensitized, Nature, 353, 24

Kang, 2011, Fabrication of PbS nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties, ACS Appl. Mater. Interfaces, 3, 746, 10.1021/am101086t

Tan, 2010, Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications, ACS Appl. Mater. Interfaces, 2, 498, 10.1021/am900726k

Grimes, 2009

Macak, 2007, Filling of TiO2 Nanotubes by Self-Doping and Electrodeposition, Adv. Mater., 19, 3027, 10.1002/adma.200602549

Macak, 2007, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater. Sci., 11, 3, 10.1016/j.cossms.2007.08.004

Kesselman, 1997, E Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways, J. Phys. Chem. B, 101, 2637, 10.1021/jp962669r

Chen, 2011, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331, 746, 10.1126/science.1200448

Fabregat-Santiago, 2008, High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping, J. Am. Chem. Soc., 130, 11312, 10.1021/ja710899q

Kattouf, 2009, Enhanced reversible electrochromism via in situ phase transformation in tungstate monohydrate, Chem. Commun., 7396, 10.1039/b913461a

Kim, 2011, Enhanced Photovoltaic Properties of a Cobalt Bipyridyl Redox Electrolyte in Dye-Sensitized Solar Cells Employing Vertically Aligned TiO2 Nanotube Electrodes, J. Phys. Chem.C, 115, 19979, 10.1021/jp2025736

Yamase, 1998, Photo-and electrochromism of polyoxometalates and related materials, Chem. Rev., 98, 307, 10.1021/cr9604043

Granqvist, 1995

Deb, 2008, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications, Sol. Energy Mater. Sol. Cells, 92, 245, 10.1016/j.solmat.2007.01.026

Rosseinsky, 2001, Electrochromic systems and the prospects for devices, Adv. Mater., 13, 783, 10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D

Mortimer, 1997, Electrochromic materials, Chem. Soc. Rev., 26, 147, 10.1039/cs9972600147

Gillaspie, 2010, Metal-oxide films for electrochromic applications: present technology and future directions, J. Mater. Chem., 20, 9585, 10.1039/c0jm00604a

Bard, 1980

Yun, 2009, Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid, J. Phys. Chem.C, 113, 3050, 10.1021/jp808604t

Lu, 2012, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano lett., 12, 1690, 10.1021/nl300173j

Kim, 2013, Facile detection of photogenerated reactive oxygen species in TiO2 nanoparticles suspension using colorimetric probe-assisted spectrometric method, Chemosphere, 93, 2011, 10.1016/j.chemosphere.2013.07.023

Simonsen, 2010, Photocatalytic bleaching of p-nitrosodimethylaniline and a comparison to the performance of other AOP technologies, J. Photochem. Photobiol., A, 216, 244, 10.1016/j.jphotochem.2010.07.008

Cho, 2004, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, Water Res., 38, 1069, 10.1016/j.watres.2003.10.029

Jeong, 2009, The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes, Water Res., 43, 895, 10.1016/j.watres.2008.11.033

Tokudome, 2005, Electrochromism of Titanate-Based Nanotubes, Angew. Chem. Int. Ed., 44, 1974, 10.1002/anie.200462448

Sakai, 2001, Highly hydrophilic surfaces of cathodically polarized amorphous TiO2 electrodes, J. Electrochem. Soc., 148, E395, 10.1149/1.1399279

Ghicov, 2006, TiO2 nanotubes: H+ insertion and strong electrochromic effects, Electrochem. Commun., 8, 528, 10.1016/j.elecom.2006.01.015

Kuvarega, 2012, Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water, J. Nanopart. Res., 14, 1, 10.1007/s11051-012-0776-x

Mor, 2005, Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films, Adv. Funct. Mater., 15, 1291, 10.1002/adfm.200500096

Chastain, 1992

Lai, 2006, Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity, J. Electrochem. Soc., 153, D123, 10.1149/1.2203112

Wu, 2014, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach, Electrochim. Acta, 116, 129, 10.1016/j.electacta.2013.10.092

Kralji, 1965, p-Nitrosodimethylaniline as an OH Radical Scavenger in Radiation Chemistry1, J. Am. Chem. Soc., 87, 2547, 10.1021/ja01090a004

Panizza, 2005, Application of diamond electrodes to electrochemical processes, Electrochim. Acta, 51, 191, 10.1016/j.electacta.2005.04.023

Marselli, 2003, Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes, J. Electrochem. Soc., 150, D79, 10.1149/1.1553790