Surface acoustic wave-based ultraviolet photodetectors: a review

Science Bulletin - Tập 65 - Trang 587-600 - 2020
Yi Zhang1, Yao Cai1, Jie Zhou1, Ying Xie1, Qinwen Xu1, Yang Zou1, Shishang Guo2, Hongxing Xu2, Chengliang Sun1, Sheng Liu1
1The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
2School of Physical and Technology, Wuhan University, Wuhan 430072, China

Tài liệu tham khảo

Monroy, 2003, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond Sci Technol, 18, R33, 10.1088/0268-1242/18/4/201 Muller, 2001, SPICAM-light on Mars-Express as a monitor of surface UV radiation and atmospheric oxidants, Planet Space Sci, 49, 165, 10.1016/S0032-0633(00)00131-8 Razeghi, 1996, Semiconductor ultraviolet detectors, J Appl Phys, 79, 7433, 10.1063/1.362677 Lincke, 1962, New detector for the vacuum ultraviolet, Rev Sci Instrum, 33, 911, 10.1063/1.1718023 Li, 2007, Si-based metal-semiconductor-metal photodetectors with various design modifications, Solid-State Electron, 51, 94, 10.1016/j.sse.2006.11.006 Tsai, 2011, Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays, ACS Nano, 5, 7748, 10.1021/nn203357e Lopez-Sanchez, 2013, Ultrasensitive photodetectors based on monolayer MoS2, Nat Nanotechnol, 8, 497, 10.1038/nnano.2013.100 Matthus, 2019, Wavelength-selective 4H-SiC UV-sensor array, Mater Sci Semicond Process, 90, 205, 10.1016/j.mssp.2018.10.019 Bai, 2011, High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates, Adv Funct Mater, 21, 4464, 10.1002/adfm.201101319 Zhou, 2011, Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect, Nanoscale Res Lett, 6, 147, 10.1186/1556-276X-6-147 Gundimeda, 2017, Fabrication of non-polar GaN based highly responsive and fast UV photodetector, Appl Phys Lett, 110, 10.1063/1.4978427 Xie, 2012, Ultra-low dark current AlGaN-based solar-blind metal-semiconductor-metal photodetectors for high-temperature applications, IEEE Sens J, 12, 2086, 10.1109/JSEN.2012.2184533 Jaiswal, 2018, Microwave irradiation-assisted deposition of Ga2O3 on III-nitrides for deep-UV opto-electronics, Appl Phys Lett, 112, 10.1063/1.5010683 Tsai, 2013, Solar-blind photodetectors for harsh electronics, Sci Rep, 3, 2628, 10.1038/srep02628 Soltani, 2008, 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors, Appl Phys Lett, 92, 10.1063/1.2840178 Liao, 2005, Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact, Appl Phys Lett, 87, 10.1063/1.1992660 Sang, 2013, A Comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures, Sensors, 13, 10482, 10.3390/s130810482 Xie, 2019, Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors, Adv Funct Mater, 29, 1806006, 10.1002/adfm.201806006 Ciplys, 2001, GaN-based SAW delay-line oscillator, Electron Lett, 37, 545, 10.1049/el:20010358 Ciplys, 2002, Visible-blind photoresponse of GaN-based surface acoustic wave oscillator, Appl Phys Lett, 80, 2020, 10.1063/1.1459485 Wixforth, 1989, Surface acoustic waves on GaAs/AlxGa1–xAs heterostructures, Phys Rev B, 40, 7874, 10.1103/PhysRevB.40.7874 Rotter, 1998, Giant acoustoelectric effect in GaAs/LiNbO3 hybrids, Appl Phys Lett, 73, 2128, 10.1063/1.122400 Buttry, 1992, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance, Chem Rev, 92, 1355, 10.1021/cr00014a006 Fu, 2017, Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications, Prog Mater Sci, 89, 31, 10.1016/j.pmatsci.2017.04.006 Fu, 2005, Wireless passive SAW sensors using single-electrode-type IDT structures as programmable reflectors, Sens Actuator A-Phys, 122, 203, 10.1016/j.sna.2005.05.006 Alaie, 2015, Recent advances in ultraviolet photodetectors, Mater Sci Semicond Process, 29, 16, 10.1016/j.mssp.2014.02.054 BenMoussa, 2009, Recent developments of wide-bandgap semiconductor based UV sensors, Diam Relat Mater, 18, 860, 10.1016/j.diamond.2008.11.013 Peng, 2013, Low-dimensional nanostructure ultraviolet photodetectors, Adv Mater, 25, 5321, 10.1002/adma.201301802 Parmenter, 1953, The Acousto-electric effect, Phys Rev, 89, 990, 10.1103/PhysRev.89.990 Weinreich, 1957, Observation of the acoustoelectric effect, Phys Rev, 106, 1104, 10.1103/PhysRev.106.1104 Wang, 2015, Advances in nanostructured acoustic wave technologies for ultraviolet sensing, Nanosci Nanotechnol Lett, 7, 169, 10.1166/nnl.2015.1968 Lee, 2013, An ultraviolet sensor using spin-coated ZnO nanoparticles based on surface acoustic waves, Microelectron Eng, 111, 105, 10.1016/j.mee.2013.02.025 Davis, 1984, Oxygen chemisorption at defect sites in MoS2 and ReS2 basal plane surfaces, Appl Surface Sci, 20, 193, 10.1016/0378-5963(84)90339-8 Cheeke, 1999, Acoustic wave gas sensors, Sens Actuator B-Chem, 59, 146, 10.1016/S0925-4005(99)00212-9 Zhou, 2018, 2-Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing, Sens Actuator A-Phys, 271, 389, 10.1016/j.sna.2017.12.007 Ciplys D, Shur MS, Pala N, et al. Ultraviolet-sensitive AlGaN-based surface acoustic wave devices. In: Rocha D, Sarro PM, Vellekoop MJ, eds. Proceedings of the IEEE Sensors 2004. New York: IEEE; 2004, p. 1345–1348. Chivukula, 2010, Impact of photocapacitance on phase response of GaN/sapphire SAW UV sensor, IEEE Sens J, 10, 883, 10.1109/JSEN.2009.2036936 Chivukula VS, Ciplys D, Shur MS, et al. Capacitance controlled n-GaN SAW UV sensor. In: Proceedings of the IEEE Sensors 2008. New York: IEEE; 2008, p. 984–987. Peng, 2013, Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors, J Micromech Microeng, 23, 10.1088/0960-1317/23/12/125008 Wang, 2015, Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors, Chin Phys B, 24 Guo, 2015, Ultraviolet sensing based on nanostructured ZnO/Si surface acoustic wave devices, Smart Mater Struct, 24, 10.1088/0964-1726/24/12/125015 Wei, 2010, Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator, Thin Solid Films, 518, 3059, 10.1016/j.tsf.2009.07.207 Phan, 2012, Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode, Curr Appl Phys, 12, 210, 10.1016/j.cap.2011.06.004 Chen YY, Ho CH, Wu TT. Surface acoustic wave ultraviolet sensors based on ZnO nanorods. 2015 9th International Conference on Sensing Technology. International Conference on Sensing Technology. New York: IEEE; 2015, p. 406–411. Water, 2010, Love wave ultraviolet photodetector using ZnO nanorods synthesized on 90°-rotated ST-cut (42°45′) quartz, Sens Actuators A-Phys, 161, 6, 10.1016/j.sna.2010.03.026 Pang, 2013, Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36°Y-cut LiTaO3, Sens Actuator A-Phys, 193, 87, 10.1016/j.sna.2013.01.016 Sharma, 2003, Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter, Appl Phys Lett, 83, 3617, 10.1063/1.1622436 Peng, 2012, Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer, Sens Actuator A-Phys, 184, 34, 10.1016/j.sna.2012.06.017 Peng, 2013, Performance improvement of ZnO nanowire based surface acoustic wave ultraviolet detector via poly(3,4-ethylenedioxythiophene) surface coating, Sens Actuator A-Phys, 199, 149, 10.1016/j.sna.2013.05.015 Jo, 2014, Sensitivity improvement of the surface acoustic wave ultraviolet sensor based on zinc oxide nanoparticle layer with an ultrathin gold layer, Sens Actuator A-Phys, 210, 59, 10.1016/j.sna.2014.02.007 Li, 2019, Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices, Surf Coat Technol, 363, 419, 10.1016/j.surfcoat.2019.02.041 Water, 2012, Application of ZnO nanorods synthesized on 64°Y-cut LiNbO3 to surface acoustic wave ultraviolet photodetector, Sens Actuator B-Chem, 173, 310, 10.1016/j.snb.2012.07.004 Wang, 2009, A ZnO nanorod-based SAW oscillator system for ultraviolet detection, Nanotechnology, 20 Phan, 2013, Effects of rapid thermal annealing on surface acoustic wave ultraviolet sensors using ZnO nanorods grown on AlN/Si structures, J Electroceram, 30, 185, 10.1007/s10832-013-9782-3 Fu, 2015, Low-intensity ultraviolet detection using a surface acoustic-wave sensor with a Ag-doped ZnO nanoparticle film, Smart Mater Struct, 24, 10.1088/0964-1726/24/1/015010 Wang, 2014, Thermal annealing effect on ZnO surface acoustic wave-based ultraviolet light sensors on glass substrates, Appl Phys Lett, 104, 10.1063/1.4880898 Tsai, 2015, Room temperature fabrication of ZnO/ST-cut quartz SAW UV photodetector with small temperature coefficient, Opt Express, 23, 2187, 10.1364/OE.23.002187 Xie, 2017, Effectiveness of oxide trench array as a passive temperature compensation structure in AlN-on-silicon micromechanical resonators, Appl Phys Lett, 110, 10.1063/1.4976808 Avramov, 2005, Rayleigh SAW resonators using gold electrode structure for gas sensor applications in chemically reactive environments, Electron Lett, 41, 450, 10.1049/el:20050432 Preciado, 2015, Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3, Nat Commun, 6, 8593, 10.1038/ncomms9593 Ciplys, 2006, Deep-UV LED controlled AlGaN-based SAW oscillator, Phys Status Solidi A-Appl Mater, 203, 1834, 10.1002/pssa.200565218 Laksana, 2011, Deep-UV sensors based on SAW oscillators using low-temperature-grown AlN films on sapphires, IEEE Trans Ultrason Ferroelectr Freq Control, 58, 1688, 10.1109/TUFFC.2011.1997 Zhang, 1998, Surface brillouin scattering study of the surface excitations in amorphous silicon layers produced by ion bombardment, Phys Rev B, 58, 13677, 10.1103/PhysRevB.58.13677 Muller, 2015, Sezawa propagation mode in GaN on Si surface acoustic wave type temperature sensor structures operating at GHz frequencies, IEEE Electron Device Lett, 36, 1299, 10.1109/LED.2015.2494363 Panella, 1997, Brillouin scattering study of epitaxial InSe films grown on the Si(111)1×1-H surface, J Phys Condes Matter, 9, 5575, 10.1088/0953-8984/9/26/006 Josse, 2001, Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids, Anal Chem, 73, 5937, 10.1021/ac010859e Water, 2014, Love wave ultraviolet photodetector fabricated on a TiO2/ST-cut quartz structure, Int J Photoenergy, 2014, 10.1155/2014/270186 Huang, 2001, Room-temperature ultraviolet nanowire nanolasers, Science, 292, 1897, 10.1126/science.1060367 Wang, 2006, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, 312, 242, 10.1126/science.1124005 Soci, 2010, Nanowire photodetectors, J Nanosci Nanotechnol, 10, 1430, 10.1166/jnn.2010.2157 Soci, 2007, ZnO nanowire UV photodetectors with high internal gain, Nano Lett, 7, 1003, 10.1021/nl070111x Lao, 2007, Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization, J Am Chem Soc, 129, 12096, 10.1021/ja075249w Chen, 2015, New concept ultraviolet photodetectors, Mater Today, 18, 493, 10.1016/j.mattod.2015.06.001 Kong, 2009, Metal-semiconductor-metal TiO2 ultraviolet detectors with Ni electrodes, Appl Phys Lett, 94, 10.1063/1.3103288 Shi, 2011, Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes, Nano Lett, 11, 3413, 10.1021/nl201823u Water, 2016, Application of TiO2 thin film with nanorods to surface acoustic wave type ultraviolet photo detection, J Electroceram, 36, 94, 10.1007/s10832-016-0019-0 Tadigadapa, 2009, Piezoelectric MEMS sensors: state-of-the-art and perspectives, Meas Sci Technol, 20, 10.1088/0957-0233/20/9/092001 Du, 2008, ZnO film thickness effect on surface acoustic wave modes and acoustic streaming, Appl Phys Lett, 93, 10.1063/1.2970960 Parks, 2014, Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride, IEEE Trans Ultrason Ferroelectr Freq Control, 61, 1216, 10.1109/TUFFC.2014.3020 Kaletta, 2015, AlN/SiO2/Si3N4/Si(100)-based CMOS compatible surface acoustic wave filter with −12.8-dB minimum insertion loss, IEEE Trans Electron Devices, 62, 764, 10.1109/TED.2015.2395443 Ambacher, 1999, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures, J Appl Phys, 85, 3222, 10.1063/1.369664 Akiyama, 2009, Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering, Adv Mater, 21, 593, 10.1002/adma.200802611 Caro, 2015, Piezoelectric coefficients and spontaneous polarization of ScAlN, J Phys-Condes Matter, 27 Tasnadi, 2010, Origin of the anomalous piezoelectric response in wurtzite ScxAl1–xN alloys, Phys Rev Lett, 104, 10.1103/PhysRevLett.104.137601 Wingqvist, 2010, Increased electromechanical coupling in w-ScxAl1–xN, Appl Phys Lett, 97, 10.1063/1.3489939 Hashimoto, 2013, High-performance surface acoustic wave resonators in the 1 to 3 GHz range using a ScAlN/6H-SiC structure, IEEE Trans Ultrason Ferroelectr Freq Control, 60, 637, 10.1109/TUFFC.2013.2606 Deng, 2013, Bandgap in Al1–xScxN, Appl Phys Lett, 102, 10.1063/1.4795784 Moram, 2014, ScGaN and ScAlN: emerging nitride materials, J Mater Chem A, 2, 6042, 10.1039/C3TA14189F Zhang, 2013, Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides, J Appl Phys, 114 Yang, 2013, Influence of sputtering power on crystal quality and electrical properties of Sc-doped AlN film prepared by DC magnetron sputtering, Appl Surf Sci, 287, 355, 10.1016/j.apsusc.2013.09.155 Deng, 2015, Optical and electron transport properties of rock-salt Sc1–xAlxN, J Appl Phys, 118, 10.1063/1.4923429 Emanetoglu, 2004, Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire, Appl Phys Lett, 85, 3702, 10.1063/1.1811383 Phan, 2012, Fabrication and characteristics of a surface acoustic wave UV sensor based on ZnO thin films grown on a polycrystalline 3C-SiC buffer layer, Curr Appl Phys, 12, 521, 10.1016/j.cap.2011.08.013 Chivukula, 2010, AlGaN based highly sensitive radio-frequency UV sensor, Appl Phys Lett, 96, 10.1063/1.3405692 Chen, 2008, Suitability of surface acoustic wave oscillators fabricated using low temperature-grown AIN films on GaN/sapphire as UV sensors, IEEE Trans Ultrason Ferroelectr Freq Control, 55, 489, 10.1109/TUFFC.2008.666 Kumar, 2005, Low-intensity ultraviolet light detector using a surface acoustic wave oscillator based on ZnO/LiNbO3 bilayer structure, Semicond Sci Technol, 20, L27, 10.1088/0268-1242/20/8/L01 Kumar, 2009, ZnO based surface acoustic wave ultraviolet photo sensor, J Electroceram, 22, 198, 10.1007/s10832-007-9409-7 Zhang, 2015, High-performance AlGaN metal-semiconductor-metal solar-blind ultraviolet photodetectors by localized surface plasmon enhancement, Appl Phys Lett, 106 Ruby R. Review and comparison of bulk acoustic wave FBAR, SMR technology. 2007 IEEE Ultrasonics Symposium Proceedings, 2007:1029. AignerSAW, 2008, SAW and BAW technologies for RF filter applications: a review of the relative strengths and weaknesses, 2008 IEEE Ultrasonics Symposium, 582, 10.1109/ULTSYM.2008.0140 Weber, 2006, Shear mode FBARs as highly sensitive liquid biosensors, Sens Actuator A-Phys, 128, 84, 10.1016/j.sna.2006.01.005 Qiu, 2009, Film bulk acoustic-wave resonator based ultraviolet sensor, Appl Phys Lett, 94, 10.1063/1.3122342 Bian, 2015, UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure, Sci Rep, 5, 9123, 10.1038/srep09123 Zou, 2017, High-Q butterfly-shaped AlN Lamb wave resonators, IEEE Electron Device Lett, 38, 1739, 10.1109/LED.2017.2769619 Zhu, 2016, A high coupling coefficient 2.3-GHz AlN resonator for high band LTE filtering application, IEEE Electron Device Lett, 37, 1344, 10.1109/LED.2016.2602852 Zhu, 2017, ScAlN-based LCAT mode resonators above 2 GHz with high FOM and reduced fabrication complexity, IEEE Electron Device Lett, 38, 1481, 10.1109/LED.2017.2747089 Sun, 2015, Methods for improving electromechanical coupling coefficient in two dimensional electric field excited AlN Lamb wave resonators, Appl Phys Lett, 106, 10.1063/1.4923207 He, 2014, High performance dual-wave mode flexible surface acoustic wave resonators for UV light sensing, J Micromech Microeng, 24, 10.1088/0960-1317/24/5/055014 Qian, 2016, Graphene-aluminum nitride NEMS resonant infrared detector, Microsyst Nanoeng, 2, 10626, 10.1038/micronano.2016.26 Ang, 2014, Uncooled resonant infrared detector based on aluminum nitride piezoelectric film through charge generations and lattice absorptions, Appl Phys Lett, 104, 10.1063/1.4879024 Hui, 2016, Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing, Nat Commun, 7, 11249, 10.1038/ncomms11249 Xu, 2018, A real-time wearable UV-radiation monitor based on a high-performance p-CuZns/n-TiO2 photodetector, Adv Mater, 30, 1803165, 10.1002/adma.201803165 Peng, 2018, High-performance flexible and broadband photodetectors based on PbS quantum dots/ZnO nanoparticles heterostructure, Sci China Mater, 62, 225, 10.1007/s40843-018-9311-9 Cai, 2019, Materials and designs for wearable photodetectors, Adv Mater, 31, 1808138, 10.1002/adma.201808138 Fan, 2016, UV photodetectors based on 3D periodic Au-decorated nanocone ZnO films, Nanotechnology, 27, 10.1088/0957-4484/27/36/365303 Wei, 2017, Optical field confinement enhanced single ZnO microrod UV photodetector, Chin Phys Lett, 34, 10.1088/0256-307X/34/7/078503 Chen, 2017, Highly desirable photodetectors derived from versatile plasmonic nanostructures, Adv Funct Mater, 27, 1704181, 10.1002/adfm.201704181 Hasan, 2019, 85