Uniform Spread of High‐Speed Drops on Superhydrophobic Surface by Live‐Oligomeric Surfactant Jamming

Advanced Materials - Tập 31 Số 41 - 2019
Siqi Luo1,2, Zhidi Chen1,2, Zhichao Dong3,2, Yaxun Fan1, Yao Chen1, Bin Liu1,2, Cunlong Yu3, Chuxin Li3, Haoyu Dai1, Haofei Li1,2, Yilin Wang1,2, Lei Jiang3,2
1CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
2School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Tóm tắt

Abstract

Inkjet printing of water‐based inks on superhydrophobic surfaces is important in high‐resolution bioarray detection, chemical analysis, and high‐performance electronic circuits and devices. Obtaining uniform spreading of a drop on a superhydrophobic surface is still a challenge. Uniform round drop spreading and high‐resolution inkjet printing patterns are demonstrated on superhydrophobic surfaces without splash or rebound after high‐speed impacting by introducing live‐oligomeric surfactant adhesion. During impact, the live‐oligomeric surfactant molecules aggregate into dynamic, wormlike micelle networks, which jam at the solid–liquid interface by entangling with the surface micro/nanostructures to pin the contact line and jam at the spreading periphery to keep the uniform spreading lamellar shape. This efficient uniform spreading of high‐speed impact drops opens a promising avenue to control drop impact dynamics and achieve high‐resolution printing.

Từ khóa


Tài liệu tham khảo

10.1038/35015525

10.1146/annurev.bioeng.4.020702.153438

10.1146/annurev.fluid.38.050304.092144

10.1002/adma.200300385

10.1038/nature10313

10.1002/adma.201706111

10.1126/sciadv.aat2390

10.1073/pnas.1521342113

10.1002/adma.201400697

10.1038/nmat1974

10.1038/ncomms12424

10.1038/ncomms15255

10.1038/s41563-018-0178-2

10.1021/acscentsci.8b00504

10.1038/417811a

10.1021/la802897g

10.1038/nature12740

10.1038/nphys2980

10.1038/ncomms9001

10.1038/ncomms10034

10.1038/am.2017.122

10.1126/sciadv.1602188

10.1039/C8MH01343H

10.1021/acs.jafc.7b02004

10.1103/PhysRevLett.99.174502

10.1103/PhysRevLett.104.154502

10.1039/C2SM26759D

10.1007/s00348-017-2341-y

10.1016/S0927-7757(02)00213-3

10.1021/la049268k

10.1007/s00348-009-0703-9

10.1016/j.cocis.2010.12.003

10.1017/S0022112010005495

10.1073/pnas.1821493116

10.1021/nn4048099

10.1017/S0022112002003427

10.1039/C7SM02058A

10.1021/la9048067

10.1017/S0022112004000904

10.1017/S0022112005007184

10.1038/35015645

10.1002/adma.201600691

10.1002/anie.201706839

10.1126/sciadv.aap8045

10.1063/1.3110054

10.1016/j.cocis.2017.12.006

10.1038/ncomms6314

10.1021/la00010a018

10.1021/la990645g

10.1021/acs.langmuir.6b02091

10.1139/v03-096

10.1016/j.jcis.2007.11.021