Post-annealing temperature effects on the structural and optical properties and Cr(VI) removal performance of laser-ablated copper oxide nanoparticles

Bulletin of Materials Science - Tập 46 - Trang 1-9 - 2023
H Azadi1, R Malekfar1
1Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran

Tóm tắt

In this study, laser-ablated nanoparticles were produced by laser ablation of a copper target in deionized water by the increased first harmonic of Nd:YAG laser and the influence of the subsequent annealing temperature on the structural and optical properties of produced nanoparticles was studied. Also, the annealing temperature influence on the photocatalytic reduction of aqueous Cr(VI) ion with the nanoparticles was investigated. Its X-ray diffraction (XRD) results indicate that the laser-ablated nanoparticles are completely oxidized into CuO nanoparticles by annealing and by increasing the temperature from 400 to 800°C, the mean crystallite size of nanoparticles increased from 11 to 90 nm, and the bandgap decreased from 1.2 to 1.9 eV. The bandgap increased with a size reduction due to the quantum confinement effect. The morphological analysis by field-emission scanning electron microscope and transmission electron microscope confirm that spherical-shaped CuO nanoparticles are formed and the size of particles increased with the increase in the annealing temperature. The photocatalytic activity results of nanoparticles show maximum Cr(VI) reduction for nanoparticles annealed at 600°C. The decrease as the temperature of annealing rises is associated with the surface area reduction and the temperature reduce is attributed to the expansion of the bandgap.

Tài liệu tham khảo

Andrievski R A and Glezer A M 2001 Scr. Mater. 44 1621 De Mello Donegá C 2014 Nanoparticles: workhorses of nanoscience 13 Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P and Tarascon J M 2001 J. Electrochem. Soc. 148 285 Sun Q, Zhou S, Shi X, Wang X, Gao L, Li Z et al 2018 ACS Appl. Mater. Interfaces 10 11289 Hou L, Zhang C, Li L, Du C, Li X, Kang X F et al 2018 Talanta 188 41 Karpov I V, Ushakov A V, Demin V G, Shaihadinov A A, Demchenko A I, Fedorov L Y et al 2019 J. Magn. Magn. Mater. 490 165492 Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A et al 2012 Small 8 3326 Shinde S K, Yadav H M, Ghodake G S, Kadam A A, Kumbhar V S, Yang J et al 2019 Colloids Surfaces B Biointerfaces 181 1004 Sahu K, Choudhary S, Khan S A, Pandey A and Mohapatra S 2019 Nano-Struct. Nano-Objects 17 92 Jana R, Dey A, Das M, Datta J, Das P and Ray P P 2018 Appl. Surf. Sci. 452 155 Zhang J, Wang J, Fu Y, Zhang B and Xie Z 2015 RSC Adv. 5 28786 Sahu K, Singh J and Mohapatra S 2019 J. Mater. Sci. Mater. Electron. 30 6088 Kim D S, Kim J C, Kim B K and Kim D W 2016 Ceram. Int. 42 19454 Lun T T, Liu C Q, Wang N, Zhai X N, Song M S, Ge Q et al 2019 Mater. Lett. 257 126745 Xu M, Wang F, Ding B, Song X and Fang J 2012 RSC Adv. 2 2240 Wang H, Xu J Z, Zhu J J and Chen H Y 2002 J. Cryst. Growth 244 88 Xu C, Liu Y, Xu G and Wang G 2002 Mater. Res. Bull. 37 2365 Zhang D, Gokce B and Barcikowski S 2017 Chem. Rev. 117 3990 Goncharova D A, Kharlamova T S, Lapin I N and Svetlichnyi V A 2019 J. Phys. Chem. C 123 21731 Gondal M A, Qahtan T F, Dastageer M A, Maganda Y W and Anjum D H 2013 J. Nanosci. Nanotechnol. 13 5759 Zhang X Hui, Zhang X, Yang Z Ping, Jiang C Xia, Ren X Bin, Wang Q et al 2012 30 584 Babu N K C, Asma K, Raghupathi A, Venba R, Ramesh R and Sadulla S 2005 J. Clean. Prod. 13 1189 Costa M 2003 Toxicol. Appl. Pharmacol. 188 1 Zhitkovich A 2011 Chem. Res. Toxicol. 24 1617 Zhang J, Guo W, Guo Q, Jin L, Liu Z and Hu S 2017 RSC Adv. 7 50657 Fernández P M, Viñarta S C, Bernal A R, Cruz E L and Figueroa L I C 2018 Chemosphere 208 139 Roy Choudhury P, Majumdar S, Sahoo G C, Saha S and Mondal P 2018 Chem. Eng. J. 336 570 Dos Santos C S L, Miranda Reis M H, Cardoso V L and De Resende M M 2019 J. Environ. Chem. Eng. 7 103380 Ramakrishnaiah C R and Prathima B 2012 Int. J. Eng. Res. Appl. 2 599 Zhao Z, An H, Lin J, Feng M, Murugadoss V, Ding T et al 2019 Chem. Rec. 19 873 Lan Y, Lu Y and Ren Z 2013 Nano Energy 2 1031 Li N, Tian Y, Zhao J, Zhang J, Zhang J, Zuo W et al 2017 Appl. Catal. B Environ. 214 126 Wan J, Zhang Y, Wang R, Liu L, Liu E, Fan J et al 2020 J. Hazard. Mater. 384 121484 Swarnkar R K, Singh S C and Gopal R 2011 Bull. Mater. Sci. 34 1363 Bhattacharjee A and Ahmaruzzaman M 2016 RSC Adv. 6 41348 Moqbel R A, Gondal M A, Qahtan T F and Dastageer M A 2018 Int. J. Energy Res. 42 1487 Singh S, Mahalingam H and Singh P K 2013 Appl. Catal. A Gen. 462 178 Prabhakar Vattikuti S V, Shome S, Koyyada G, Shim J and Jung J H 2018 Mater. Res. Bull. 107 446 Xu S, Fu L, Pham T S H, Yu A, Han F and Chen L 2015 Ceram. Int. 41 4007 Wang Y, Chen S, Jin D, Gong A, Xu X and Wu C 2018 RSC Adv. 8 7518